
Class 9 – Computer Applications 

Chapter 9: Iterative Constructs in Java 

Solved Question Bank 

 

A. Tick (✓) the correct answer. 

1. Consider the following code snippet: 

int i = 1, s = 0; 

do { 

   if (i % 4 == 0) 

       i++; 

   System.out.println(i * 2); 

   i++; 

} while (i <= 10); 

Correct Answer: d. None of these 

(Because it prints multiples of 2 but skips values when i % 4 == 0) 

 

2. for (int i = 10; i >= 1; i++) is a/an: 

Correct Answer: c. Infinite 

(Since i++ increases value, condition i >= 1 will always remain true → infinite loop) 

 

3. If “do-while” loop is exit-controlled, then “while” loop is: 

Correct Answer: b. Entry-controlled 

 

4. What will the following program segment print? 

int a = 5, b = 2; 

if (a > b) 

    a = a + 1; 

b = b * 2; 

System.out.print(a + ":" + b); 

Correct Answer: c. 6 : 4 

 

5. What will be the output of the following code? 

int m = 21, n = 15; 

for (int i = 1; i < 5; i++) { 

    m++; 

    --n; 

} 

System.out.println("m = " + m); 

System.out.println("n = " + n); 



Correct Answer: b. m = 25, n = 11 

 

B. Fill in the blanks (with answers). 

1. for loops can have an empty loop body. 

2. The two jump statements are break and continue. 

3. To execute a loop 10 times: for (i = 3; i <= 30; i = i + 3) 

4. for (i = 10; i < 10; i++) loop executes for 0 times. 

5. An entry-controlled loop checks the condition at the time of entry. 

6. Both while and do-while are suitable when the number of iterations is not known. 

 

C. Short Answer Type Questions (Solved). 

1. Difference between multiline and documentation comment: 

o Multiline: /* comment */ → Used for general purpose comments. 

o Documentation: /** comment */ → Used for JavaDoc documentation generation. 

2. Syntax to input short type using Scanner: 
3. Scanner sc = new Scanner(System.in); 
4. short n = sc.nextShort(); 

5. Three types of errors: 
o Syntax errors 

o Runtime errors 

o Logical errors 

6. Logical error example: 
7. int a = 5, b = 0; 
8. System.out.println(a/b); // Runtime error (divide by zero)   

9. Difference between try and catch: 

o try contains risky code. 

o catch handles the exception if it occurs. 

 

D. Programming Questions (Solved). 

1. Series Programs 

i. Print 1, 3, 5, 7 … 99 

for(int i = 1; i <= 99; i += 2) 

    System.out.print(i + " "); 

ii. 20, 18, 16 … 2 

for(int i = 20; i >= 2; i -= 2) 

    System.out.print(i + " "); 

iii. 2, 4, 8, 16 … 256 

for(int i = 2; i <= 256; i *= 2) 

    System.out.print(i + " "); 

iv. 1/3, 2/6, 3/9 … 10/30 



for(int i = 1; i <= 10; i++) 

    System.out.print(i + "/" + (i*3) + " "); 

v. 1, 12, 123, 1234, 12345 

int num = 0; 

for(int i = 1; i <= 5; i++) { 

    num = num * 10 + i; 

    System.out.print(num + " "); 

} 

vi. 1, 11, 111, 1111, 11111 

int num = 0; 

for(int i = 1; i <= 5; i++) { 

    num = num * 10 + 1; 

    System.out.print(num + " "); 

} 

 

2. Special Numbers 

Neon Number 

int n = 9; 

int sq = n * n; 

int sum = 0; 

while(sq > 0) { 

   sum += sq % 10; 

   sq /= 10; 

} 

if(sum == n) 

   System.out.println("Neon Number"); 

else 

   System.out.println("Not Neon"); 

Palindrome 

int n = 141, rev = 0, temp = n; 

while(n > 0) { 

   rev = rev * 10 + (n % 10); 

   n /= 10; 

} 

if(temp == rev) 

   System.out.println("Palindrome"); 

else 

   System.out.println("Not Palindrome"); 

Disarium 

int n = 135, temp = n, sum = 0, len = String.valueOf(n).length(); 

while(temp > 0) { 

   int d = temp % 10; 

   sum += Math.pow(d, len); 

   len--; 

   temp /= 10; 

} 

if(sum == n) 

   System.out.println("Disarium Number"); 

else 

   System.out.println("Not Disarium"); 

Automorphic 

int n = 76, sq = n*n; 



if(String.valueOf(sq).endsWith(String.valueOf(n))) 

   System.out.println("Automorphic"); 

else 

   System.out.println("Not Automorphic"); 

Duck Number 

int n = 7056; 

String s = String.valueOf(n); 

if(s.contains("0")) 

   System.out.println("Duck Number"); 

else 

   System.out.println("Not Duck Number"); 

Krishnamurthy Number (145) 

int n = 145, temp = n, sum = 0; 

while(temp > 0) { 

   int d = temp % 10, fact = 1; 

   for(int i = 1; i <= d; i++) fact *= i; 

   sum += fact; 

   temp /= 10; 

} 

if(sum == n) 

   System.out.println("Krishnamurthy Number"); 

else 

   System.out.println("Not Krishnamurthy"); 

 

 

========================================================   

Solved Programs (Without String Functions) 

 

1. Print series (Math-based only) 

i. 1, 3, 5, …, 99 

for (int i = 1; i <= 99; i += 2) { 

    System.out.print(i + " "); 

} 

ii. 20, 18, 16, …, 2 

for (int i = 20; i >= 2; i -= 2) { 

    System.out.print(i + " "); 

} 

iii. 2, 4, 8, …, 256 

for (int i = 2; i <= 256; i *= 2) { 

    System.out.print(i + " "); 

} 

iv. 1/3, 2/6, 3/9 … 10/30 

for (int i = 1; i <= 10; i++) { 

    System.out.print(i + "/" + (i*3) + " "); 

} 

v. 1, 12, 123, 1234, … 



int num = 0; 

for (int i = 1; i <= 5; i++) { 

    num = num * 10 + i; 

    System.out.print(num + " "); 

} 

vi. 1, 11, 111, 1111, … 

int num = 0; 

for (int i = 1; i <= 6; i++) { 

    num = num * 10 + 1; 

    System.out.print(num + " "); 

} 

 

2. Special Numbers (No String usage) 

 

(a) Neon Number 
(A number whose sum of digits of its square = number itself) 

int n = 9; 

int sq = n * n; 

int sum = 0; 

while (sq > 0) { 

    sum += sq % 10; 

    sq /= 10; 

} 

if (sum == n) 

    System.out.println("Neon Number"); 

else 

    System.out.println("Not Neon"); 

 

(b) Palindrome Number 
(Reverse the digits and check equality) 

int n = 141, rev = 0, temp = n; 

while (temp > 0) { 

    int d = temp % 10; 

    rev = rev * 10 + d; 

    temp /= 10; 

} 

if (rev == n) 

    System.out.println("Palindrome"); 

else 

    System.out.println("Not Palindrome"); 

 

(c) Disarium Number 
(Sum of digits powered to their position = number) 

int n = 135, temp = n, len = 0, sum = 0; 

 

// Count number of digits 

temp = n; 

while (temp > 0) { 

    len++; 

    temp /= 10; 

} 

 

// Check Disarium 

temp = n; 

while (temp > 0) { 



    int d = temp % 10; 

    int pow = 1; 

    for (int i = 1; i <= len; i++) { 

        pow *= d; 

    } 

    sum += pow; 

    len--; 

    temp /= 10; 

} 

 

if (sum == n) 

    System.out.println("Disarium Number"); 

else 

    System.out.println("Not Disarium"); 

 

(d) Automorphic Number 
(Square of number ends with the same digits as the number) 

int n = 76, sq = n * n; 

int temp = n; 

int pow = 1; 

 

// Find divisor (10, 100, 1000…) 

while (temp > 0) { 

    pow *= 10; 

    temp /= 10; 

} 

 

// Compare last digits 

if (sq % pow == n) 

    System.out.println("Automorphic Number"); 

else 

    System.out.println("Not Automorphic"); 

 

(e) Duck Number 
(Has at least one 0, but not starting digit) 

int n = 7056, temp = n; 

boolean duck = false; 

 

while (temp > 0) { 

    int d = temp % 10; 

    if (d == 0) { 

        duck = true; 

        break; 

    } 

    temp /= 10; 

} 

 

if (duck) 

    System.out.println("Duck Number"); 

else 

    System.out.println("Not Duck Number"); 

 

(f) Krishnamurthy Number (Strong Number) 
(Sum of factorial of digits = number) 

int n = 145, temp = n, sum = 0; 

 

while (temp > 0) { 

    int d = temp % 10; 

    int fact = 1; 

    for (int i = 1; i <= d; i++) { 



        fact *= i; 

    } 

    sum += fact; 

    temp /= 10; 

} 

 

if (sum == n) 

    System.out.println("Krishnamurthy Number"); 

else 

    System.out.println("Not Krishnamurthy"); 

 

(g) Niven Number (Harshad Number) 
(Number divisible by sum of its digits) 

int n = 111, temp = n, sum = 0; 

 

while (temp > 0) { 

    sum += temp % 10; 

    temp /= 10; 

} 

 

if (n % sum == 0) 

    System.out.println("Niven Number"); 

else 

    System.out.println("Not Niven"); 

 

(h) Reverse Number and Absolute Difference 

int n = 194, temp = n, rev = 0; 

 

while (temp > 0) { 

    rev = rev * 10 + (temp % 10); 

    temp /= 10; 

} 

 

int diff = (n > rev) ? (n - rev) : (rev - n); 

System.out.println("Reversed = " + rev); 

System.out.println("Absolute Difference = " + diff); 

 

Class 9 – Chapter 9: Iterative Constructs in Java 

Section A: MCQs 

1. Output of the program snippet 

int i = 1, s = 0; 

do { 

    if (i % 4 == 0) 

        i++; 

    System.out.println(i * 2); 

    i++; 

} while (i <= 10); 

👉 Output will not match any given exact sequence → Answer: d. None of these 

 

2. for ( i = 10; i >= 1; i++ ) loop is 

Since i++ with condition i >= 1 never becomes false → Answer: c. infinite 



 

3. If “do-while” loop is exit control loop, then “while” loop is 

👉 Answer: b. entry 

 

4. Program segment 

int a = 5, b = 2; 

if (a > b) 

    a = a + 1; 

b = b * 2; 

System.out.print(a + ":" + b); 

👉 Output: 6:4 → Answer: c. 6:4 

 

5. Code snippet (incomplete in your text but logically): 

If syntax errors exist, it gives no output. 

👉 Answer: d. Not output 

 

Section B: Fill in the Blanks 

1. for loops have an empty loop body. 

2. The two jump statements are break and continue. 

3. To execute a loop 10 times: for (i = 1; i <= 10; i++). 

4. for (i = 10; i < 10; i++) loop executes for 0 times. 

5. An entry loop checks the condition at the time of entry. 

6. Both while and do-while are suitable in situations where number of iterations is not known. 

 

Section C: Short Answer Questions 

1. Difference between multiline comment and documentation comment 

 Multiline comment: /* ... */ used to comment multiple lines, ignored by compiler. 

 Documentation comment: /** ... */ used to generate documentation via Javadoc. 

2. Syntax to input a Short type value using Scanner 

Scanner sc = new Scanner(System.in); 

short n = sc.nextShort(); 

3. Three types of errors 

 Syntax errors – Wrong language grammar. 

 Logical errors – Wrong logic but compiles. 

 Runtime errors – Errors while running (e.g., divide by zero). 

4. Logical error with example 
Example: 

int a = 5, b = 10; 



System.out.println("Average = " + (a + b) / 2.0); // Correct 

// If written (a+b)/2 (integer division) → wrong logic 

5. Difference between try and catch 

 try block: contains statements that may cause exception. 

 catch block: handles the exception if it occurs. 

 

Section D: Java Programs (without String functions) 

 

Q12. Series using switch case 

import java.util.*; 

class SeriesMenu { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.println("1. Series: 1,12,123,1234,12345"); 

        System.out.println("2. Series: 1/1 * 2/4 * 3/9 ... n terms"); 

        int ch = sc.nextInt(); 

        int n, i, num = 0; 

        switch(ch) { 

            case 1: 

                for(i = 1; i <= 5; i++) { 

                    num = num * 10 + i; 

                    System.out.print(num + " "); 

                } 

                break; 

            case 2: 

                System.out.print("Enter n: "); 

                n = sc.nextInt(); 

                double p = 1.0; 

                for(i = 1; i <= n; i++) { 

                    p *= (double)i / (i*i); 

                } 

                System.out.println("Product = " + p); 

                break; 

            default: 

                System.out.println("Invalid choice"); 

        } 

    } 

} 

 

Q13. Sum of series using switch case 

import java.util.*; 

class SeriesSum { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.println("1. S = x + x^2/2 + x^3/3 + ... + n terms"); 

        System.out.println("2. S = 1/1^3 - 1/2^3 + 1/3^3 ... 1/n^3"); 

        int ch = sc.nextInt(); 

        int n, i, x; 

        switch(ch) { 

            case 1: 

                System.out.print("Enter x and n: "); 

                x = sc.nextInt(); 

                n = sc.nextInt(); 

                double s1 = 0; 

                for(i = 1; i <= n; i++) { 

                    s1 += Math.pow(x, i) / i; 

                } 



                System.out.println("Sum = " + s1); 

                break; 

            case 2: 

                System.out.print("Enter n: "); 

                n = sc.nextInt(); 

                double s2 = 0; 

                for(i = 1; i <= n; i++) { 

                    if(i % 2 == 0) 

                        s2 -= 1.0 / (i*i*i); 

                    else 

                        s2 += 1.0 / (i*i*i); 

                } 

                System.out.println("Sum = " + s2); 

                break; 

            default: 

                System.out.println("Invalid choice"); 

        } 

    } 

} 

 

Q14. Menu-driven program 

import java.util.*; 

class SeriesSwitch { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.println("1. Series: 0,3,7,15,24..n terms"); 

        System.out.println("2. Sum of series: 1/2 + 3/4 + 5/6 ... 19/20"); 

        int ch = sc.nextInt(); 

        int n, i; 

        switch(ch) { 

            case 1: 

                System.out.print("Enter n: "); 

                n = sc.nextInt(); 

                int term = 0; 

                for(i = 1; i <= n; i++) { 

                    term = (i*i - 1); 

                    System.out.print(term + " "); 

                } 

                break; 

            case 2: 

                double sum = 0; 

                for(i = 1; i <= 19; i+=2) { 

                    sum += (double)i / (i+1); 

                } 

                System.out.println("Sum = " + sum); 

                break; 

            default: 

                System.out.println("Invalid choice"); 

        } 

    } 

} 

 

Q15. Duck Number 

import java.util.*; 

class DuckNumber { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        int n = sc.nextInt(), d, flag = 0, num = n; 

        while(n > 0) { 

            d = n % 10; 

            if(d == 0) flag = 1; 

            n /= 10; 

        } 

        if(flag == 1) System.out.println(num + " is Duck Number"); 



        else System.out.println(num + " is not Duck Number"); 

    } 

} 

 

Q16. Factors and Factorial (switch) 

import java.util.*; 

class FactorSwitch { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.println("1. Factors"); 

        System.out.println("2. Factorial"); 

        int ch = sc.nextInt(); 

        int n = sc.nextInt(); 

        switch(ch) { 

            case 1: 

                System.out.print("Factors: "); 

                for(int i = 1; i < n; i++) { 

                    if(n % i == 0) System.out.print(i + " "); 

                } 

                break; 

            case 2: 

                int f = 1; 

                for(int i = 1; i <= n; i++) f *= i; 

                System.out.println("Factorial = " + f); 

                break; 

            default: 

                System.out.println("Invalid choice"); 

        } 

    } 

} 

 
 

Q17. Find the smallest digit in a number 

import java.util.*; 

class SmallestDigit { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.print("Enter a number: "); 

        int n = sc.nextInt(); 

        int smallest = 9; 

        int temp = n; 

        while(temp > 0) { 

            int digit = temp % 10; 

            if(digit < smallest) smallest = digit; 

            temp /= 10; 

        } 

        System.out.println("Smallest digit is " + smallest); 

    } 

} 

Example: 

Input: 6524 → Output: 2 

 

Q18. Check whether a number is prime palindrome 

import java.util.*; 

class PrimePalindrome { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.print("Enter a number: "); 



        int n = sc.nextInt(); 

        // Check palindrome 

        int reversed = 0, temp = n; 

        while(temp > 0) { 

            reversed = reversed * 10 + temp % 10; 

            temp /= 10; 

        } 

        boolean isPalindrome = (reversed == n); 

 

        // Check prime 

        boolean isPrime = true; 

        if(n < 2) isPrime = false; 

        for(int i = 2; i <= n/2; i++) { 

            if(n % i == 0) { 

                isPrime = false; 

                break; 

            } 

        } 

 

        if(isPalindrome && isPrime) 

            System.out.println(n + " is a prime palindrome number"); 

        else 

            System.out.println(n + " is not a prime palindrome number"); 

    } 

} 

Example: 

Input: 131 → Output: prime palindrome number 

 

Q19. Menu-driven Fibonacci series and product of even digits 

import java.util.*; 

class FibonacciEvenProduct { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.println("1. Fibonacci series"); 

        System.out.println("2. Product of even digits"); 

        int choice = sc.nextInt(); 

 

        switch(choice) { 

            case 1: 

                System.out.print("Enter n terms: "); 

                int n = sc.nextInt(); 

                int a = 0, b = 1; 

                System.out.print("Fibonacci series: " + a + " " + b + " "); 

                for(int i = 3; i <= n; i++) { 

                    int c = a + b; 

                    System.out.print(c + " "); 

                    a = b; 

                    b = c; 

                } 

                System.out.println(); 

                break; 

            case 2: 

                System.out.print("Enter a number: "); 

                int num = sc.nextInt(); 

                int product = 1, flag = 0; 

                int temp = num; 

                while(temp > 0) { 

                    int digit = temp % 10; 

                    if(digit % 2 == 0) { 

                        product *= digit; 

                        flag = 1; 

                    } 

                    temp /= 10; 

                } 



                if(flag == 0) product = 0; // no even digits 

                System.out.println("Product of even digits = " + product); 

                break; 

            default: 

                System.out.println("Invalid choice"); 

        } 

    } 

} 

 

Q20. Count positive numbers and sum negative numbers 

import java.util.*; 

class PosNegNumbers { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.print("Enter number of integers: "); 

        int n = sc.nextInt(); 

        int positiveCount = 0; 

        int negativeSum = 0; 

 

        for(int i = 0; i < n; i++) { 

            System.out.print("Enter number: "); 

            int num = sc.nextInt(); 

            if(num > 0) positiveCount++; 

            else if(num < 0) negativeSum += num; 

        } 

        System.out.println("Number of positive numbers = " + positiveCount); 

        System.out.println("Sum of negative numbers = " + negativeSum); 

    } 

} 

 

Q21. Check whether a number is Trimorphic 

import java.util.*; 

class TrimorphicNumber { 

    public static void main(String args[]) { 

        Scanner sc = new Scanner(System.in); 

        System.out.print("Enter a number: "); 

        int n = sc.nextInt(); 

        int cube = n * n * n; 

        int temp = n; 

        int digits = 0; 

 

        // Count number of digits 

        while(temp > 0) { 

            digits++; 

            temp /= 10; 

        } 

 

        int divisor = 1; 

        for(int i = 0; i < digits; i++) divisor *= 10; 

 

        if(cube % divisor == n) 

            System.out.println(n + " is a Trimorphic number"); 

        else 

            System.out.println(n + " is not a Trimorphic number"); 

    } 

} 

Example: 

Input: 6 → Output: Trimorphic number (since 6³ = 216, ends with 6) 

 


