

Class 8

Chapter -4

Algorithm and Flowchart

A. Tick (✓) the correct option.

1. Algorithm is a _____ of steps to perform a task.
 c. **Sequence**
2. Which of the following is not a characteristic of algorithm?
 c. **Compressibility**
3. Which of the following statements is true?
 b. **A decision box can have two exit points**
4. Which of the following symbols will you use to represent addition of two numbers?
 c. **Process**
5. Eating food is a process of
 c. **Loop Construct**

B. Write T for True and F for False.

1. An algorithm is a graphical representation of the steps used to solve a problem.
 F (That's a flowchart, not an algorithm.)
2. A connector is used to connect two different parts of a flowchart.
 T
3. The direction of flow of data in a flowchart is from bottom to top.
 F (It is from top to bottom or left to right.)
4. When an algorithm is executed, it should terminate after a certain or finite number of steps.
 T
5. An algorithm can be converted into a program.
 T

C Write the functions of the following Flowchart symbols:

1. **Start/Stop (Ellipse):** Indicates the beginning or end of a flowchart.
2. **Input/Output (Parallelogram):** Used to take input from the user or display output.
3. **Process (Rectangle):** Represents a process or action to be performed.
4. **Decision (Diamond):** Used to check a condition; has two outputs (Yes/No).
5. **Connector (Circle):** Connects two different parts of a flowchart.

D. Answer the following.

1. What do you understand by the term loops? How do you represent loops in algorithms and flowcharts? Explain with an example.

☞ A **loop** is a process in which a set of instructions is repeated multiple times until a condition is met.

- **In Algorithm:** we use steps like “Repeat until condition” or “Go to Step X.”
- **In Flowchart:** a decision box checks the condition, and arrows loop back to repeat steps.

Example (Print numbers 1 to 5):

- Algorithm:
 1. Start
 2. Set A = 1
 3. Print A
 4. A = A + 1
 5. If A \leq 5, go to Step 3
 6. Stop
- Flowchart: A loop with a decision diamond checking if A \leq 5.

2. State the significance of using a flowchart.

- Flowcharts provide a clear **visual representation** of problem-solving steps.
- They make it easier to **understand, analyze, and debug** algorithms.
- Help programmers to **communicate logic** effectively before coding.
- Reduce errors by planning properly.

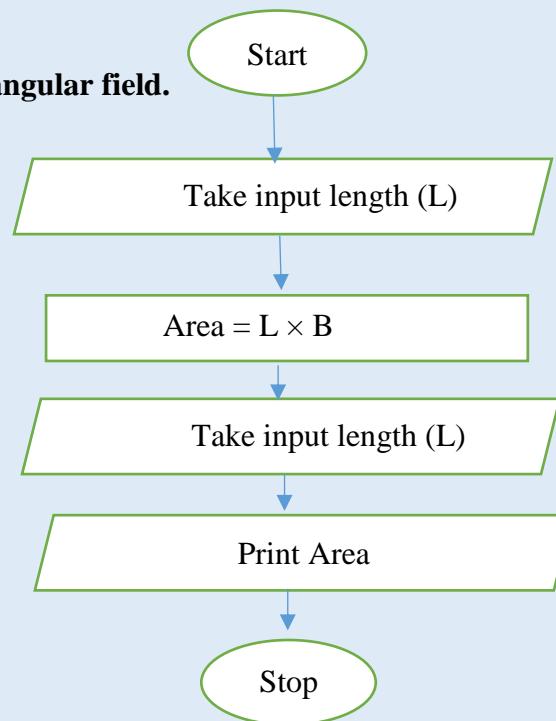
3. Briefly explain the limitations of an algorithm.

- Writing an algorithm takes **time**.
- Difficult to represent **branching and loops** in simple text form.
- When there are **too many steps**, algorithms become lengthy and hard to understand.

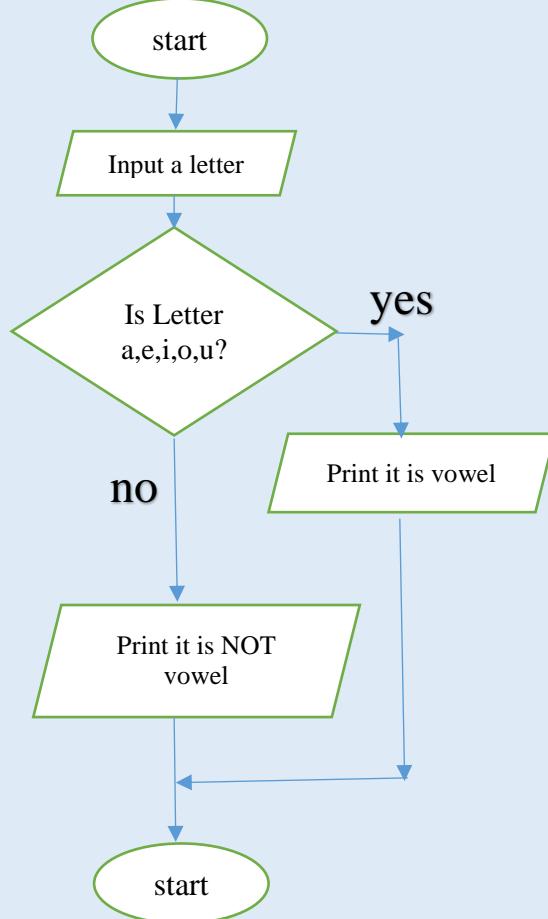
4 Write an algorithm to find the area of a rectangular field.

Algorithm:

Step-1: Start


Step2: Take input length (L)

Step-3: Take input breadth (B)


Step-4: Area = L \times B

Step-5: Print Area

Step-6: Stop

5. Draw a flowchart to check if a given letter is a vowel or not.

Algorithem (description):

Step-1: Start

Step-2: Input a letter

Step-3: Decision: check, is the letter = A, E, I, O, U (or a, e, i, o, u)?

Step-4: IF Yes → Print "Vowel"

Step-5: IF No → Print "Not a vowel"

Step-6: Stop

Some extra questions

Fill in the Blanks (with Answers)

1. A set of instructions to solve a problem is called an **algorithm**.
2. A **flowchart** is the graphical representation of an algorithm.
3. The **ellipse** symbol is used to represent Start and Stop in a flowchart.
4. A **rectangle** is used to show processing in a flowchart.
5. A **parallelogram** is used to take input or display output in a flowchart.
6. A **diamond** shape in a flowchart is used to represent a decision.
7. An algorithm should always terminate after a **finite** number of steps.
8. Every algorithm must produce at least one **output**.
9. The arrows in a flowchart are called **flow lines**.
10. A **connector** is used to join two different parts of a flowchart.
11. The process of repeating steps in an algorithm is called a **loop**.
12. Eating food step-by-step is an example of a **loop construct**.
13. Writing an algorithm helps in finding and eliminating **errors** before coding.
14. Algorithms are not dependent on any computer **language**.
15. Flowcharts make it easier to **understand** the logic of a problem.
16. The first flowcharts were introduced by **Frank Gilberth in 1921**.
17. An algorithm is always written in a **step-by-step** manner.
18. A decision box in a flowchart has at least **two exit points**.
19. When a condition is checked in a flowchart, the two possible answers are **Yes** and **No**.
20. The three main steps in problem solving are: writing an algorithm, creating a flowchart, and converting it into a **program**.

Multiple Choice Questions (20)

1. An algorithm is a:

- a) Diagram
- b) Flowchart
- c) Sequence of steps
- d) Program

☞ **Answer: c) Sequence of steps**

2. Which of the following is a graphical representation of an algorithm?

- a) Chart
- b) Flowchart
- c) Program
- d) Diagram

☞ **Answer: b) Flowchart**

3. Which flowchart symbol is used to represent decision-making?

- a) Ellipse
- b) Rectangle
- c) Diamond
- d) Parallelogram

☞ **Answer: c) Diamond**

4. A parallelogram in a flowchart is used for:

- a) Process
- b) Input/Output
- c) Start/Stop
- d) Connector

☞ **Answer: b) Input/Output**

5. A rectangle in a flowchart represents:

- a) Decision
- b) Process
- c) Start
- d) Output

☞ **Answer: b) Process**

6. Which of the following is NOT a characteristic of an algorithm?

- a) Input
- b) Output
- c) Finiteness
- d) Infinite loops

☞ **Answer: d) Infinite loops**

7. The Start/Stop symbol in a flowchart is drawn as:

- a) Circle
- b) Diamond
- c) Ellipse
- d) Square

☞ **Answer: c) Ellipse**

8. The arrows in a flowchart are called:

- a) Connectors
- b) Flow lines
- c) Pointers
- d) Symbols

☞ **Answer: b) Flow lines**

9. An algorithm must always terminate after:

- a) A condition
- b) Finite number of steps
- c) Infinite steps
- d) Any number of steps

☞ **Answer: b) Finite number of steps**

10. Which of the following introduced flowcharts in 1921?

- a) Charles Babbage
- b) Frank Gilberth
- c) Ada Lovelace

d) Alan Turing

☞ **Answer: b) Frank Gilberth**

11. A decision box always has at least:

- a) One exit point
- b) Two exit points
- c) Three exit points
- d) No exit point

☞ **Answer: b) Two exit points**

12. Which symbol is used to connect different parts of a flowchart?

- a) Ellipse
- b) Connector
- c) Rectangle
- d) Arrow

☞ **Answer: b) Connector**

13. The first step in problem solving is:

- a) Writing a program
- b) Writing an algorithm
- c) Drawing a flowchart
- d) Debugging the program

☞ **Answer: b) Writing an algorithm**

14. Flowcharts are helpful because they:

- a) Increase errors
- b) Confuse students
- c) Simplify problem solving
- d) Replace programs

☞ **Answer: c) Simplify problem solving**

15. The process of repeating a set of instructions is called:

- a) Branching
- b) Looping
- c) Sequencing
- d) Decision making

☞ **Answer: b) Looping**

16. Which of the following is an advantage of algorithms?

- a) They are language-independent
- b) They are confusing
- c) They are graphical
- d) They are always short

☞ **Answer: a) They are language-independent**

17. Which of the following is NOT true about flowcharts?

- a) They use symbols
- b) They show sequence
- c) They are text-only
- d) They show conditions

☞ **Answer: c) They are text-only**

18. Eating food step-by-step is an example of:

- a) Decision
- b) Loop construct
- c) Flowchart
- d) Algorithm only

☞ **Answer: b) Loop construct**

19. An algorithm to add two numbers must have:

- a) Only input
- b) Only output
- c) Both input and output
- d) No input

☞ **Answer: c) Both input and output**

20. Which of the following is a limitation of algorithms?

- a) They are independent of language
- b) They can be converted to programs
- c) They take more time to write
- d) They are easy to understand

☞ **Answer: c) They take more time to write**

True/False Questions (with Answers)

1. An algorithm is a sequence of steps to solve a problem.

☞ **True**

2. A flowchart is a graphical representation of an algorithm.

☞ **True**

3. Every algorithm must produce more than one output.

☞ **False** (It may produce at least one output.)

4. The ellipse symbol in a flowchart is used for Start and Stop.

☞ **True**

5. The rectangle symbol in a flowchart is used to take input.

☞ **False** (It is used for processing.)

6. Flow lines in a flowchart show the direction of the process.

☞ **True**

7. Algorithms depend on computer programming languages.

☞ **False** (They are independent of language.)

8. A decision box in a flowchart has only one exit point.

☞ **False** (It has at least two exit points.)

9. Flowcharts can have multiple Start and Stop points.

☞ **False** (They should have only one logical start and stop.)

10. The process of repeating instructions is called a loop.

☞ **True**

11. Writing an algorithm helps in finding errors before programming.

☞ **True**

12. The parallelogram symbol is used for input and output in a flowchart.

☞ **True**

13. Finiteness means that an algorithm should end after a certain number of steps.

☞ **True**

14. A connector is used to join two different parts of a flowchart.

☞ **True**

15. Frank Gilberth introduced flowcharts in 1921.

☞ **True**

16. In a flowchart, data flows from bottom to top.

☞ **False** (It flows top to bottom or left to right.)

17. Algorithms are difficult to understand because they are written in computer code.

☞ **False** (They are written in simple steps, language-independent.)

18. Eating food step by step is an example of a loop construct.

☞ **True**

19. Flowcharts use shapes and symbols to represent instructions.

☞ **True**

20. One limitation of algorithms is that writing them may take more time.

☞ **True**

Extra Questions and Answers (10)

1. Define an algorithm.

☞ An algorithm is a step-by-step sequence of instructions to solve a problem.

2. Write any two characteristics of an algorithm.

☞ (i) Finiteness – it must end after finite steps.

☞ (ii) Definiteness – each instruction must be clear.

3. Which symbol is used in a flowchart to represent input/output?

☞ A parallelogram.

4. What is the purpose of a decision symbol in a flowchart?

☞ To check a condition and give outputs based on **Yes/No**.

5. Who introduced the first flowchart and in which year?

☞ Frank Gilberth in 1921.

6. What are flow lines used for in a flowchart?

☞ To show the direction of the flow of instructions.

7. Give one advantage of writing an algorithm.

☞ It helps find and eliminate errors before converting it to a program.

8. Give one limitation of algorithms.

☞ Writing an algorithm takes more time.

9. Write the three steps involved in solving a problem using computers.

☞ (i) Writing an algorithm

☞ (ii) Developing a flowchart

☞ (iii) Converting into a program

10. Which flowchart symbol is used to represent the start and end of a program?

☞ An ellipse.

Short-Answer Descriptive Questions (10)

1. What is an algorithm? Give an example.

☞ An algorithm is a step-by-step procedure to solve a problem.

Example: To add two numbers:

1. Start
2. Input two numbers
3. Add the numbers
4. Display the sum
5. Stop

2. Write any three characteristics of a good algorithm.

☞ A good algorithm must have:

1. **Finiteness** – it must end after a finite number of steps.
2. **Definiteness** – instructions should be clear and unambiguous.
3. **Input/Output** – it must have specified input and output.

3. What is a flowchart? Why is it used?

☞ A flowchart is a diagram that uses symbols to represent the steps of an algorithm. It is used because it makes the logic easier to understand and helps in finding errors before programming.

4. Explain the use of the decision symbol in a flowchart.

☞ The decision symbol (diamond) is used to check conditions. It has two paths, usually labeled **Yes** and **No**, which help in choosing the correct flow of execution.

5. What are flow lines in a flowchart?

☞ Flow lines are arrows that show the direction of the sequence of steps in a flowchart. They connect different symbols.

6. What is the difference between an algorithm and a flowchart?

☞ An algorithm is written in simple English step-by-step, while a flowchart is a graphical representation of an algorithm using symbols.

7. Mention one advantage and one disadvantage of flowcharts.

☞ Advantage: Flowcharts make it easy to understand the logic of a problem.

☞ Disadvantage: Flowcharts are time-consuming to draw and modify.

8. Who introduced flowcharts and when?

☞ Flowcharts were first introduced by **Frank Gilberth** in **1921**.

9. Why are algorithms important in computer programming?

☞ Algorithms help in solving problems step-by-step, making programming easier, systematic, and error-free.

10. Write the three main steps of problem solving using computers.

☞ The three steps are:

1. Writing an algorithm
2. Developing a flowchart

3. Converting into a program

Long-Answer Descriptive Questions (10)

1. Explain the term algorithm. Write an algorithm to find the largest of two numbers.

☞ An algorithm is a step-by-step sequence of instructions designed to solve a problem.

Algorithm to find the largest of two numbers:

1. Start
2. Input two numbers A and B
3. If $A > B$, then Largest = A
4. Else Largest = B
5. Print Largest
6. Stop

2. Write the advantages and disadvantages of algorithms.

☞ Advantages:

1. Easy to understand as they use simple English.
2. Helps to detect errors before programming.
3. Can be used for any programming language.

☞ Disadvantages:

1. Writing algorithms takes more time.
2. They cannot show the actual logic visually.
3. For complex problems, algorithms become lengthy.

3. What is a flowchart? Draw and explain the basic symbols used in flowcharts.

☞ A flowchart is a diagram that represents an algorithm using symbols and arrows.

Symbols:

- **Ellipse (Oval):** Start/Stop
- **Rectangle:** Processing
- **Parallelogram:** Input/Output
- **Diamond:** Decision
- **Arrow:** Flow lines

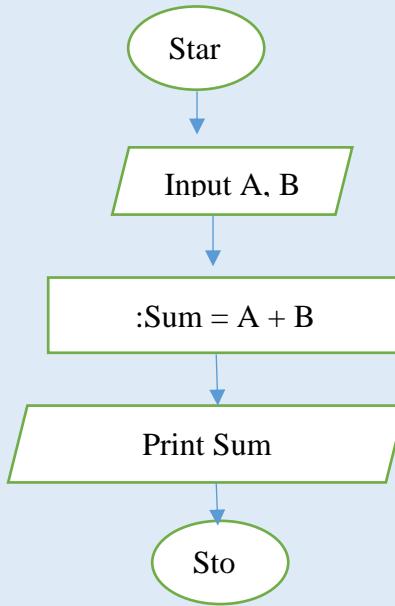
4. Write the differences between algorithms and flowcharts.

☞ Algorithm:

1. Written in step-by-step sentences.
2. Easy to write but difficult to visualize.
3. Language-independent.

☞ Flowchart:

1. Represented using symbols.
2. Easier to understand visually.
3. Takes more time to draw and modify.

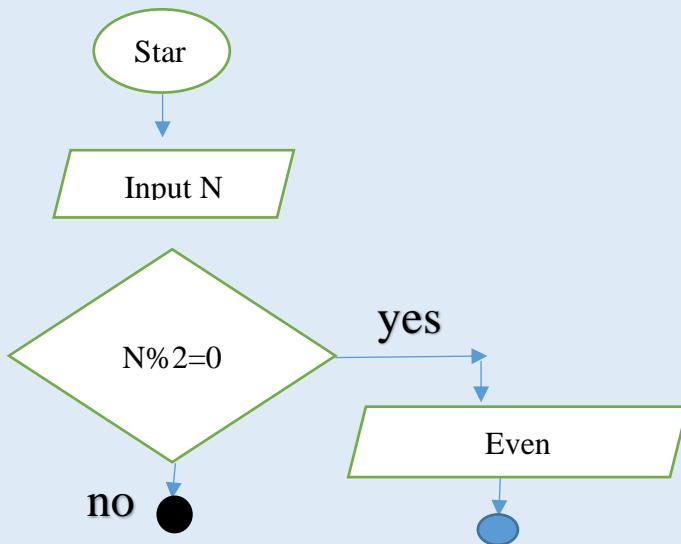

5. Write an algorithm and draw a flowchart to add two numbers.

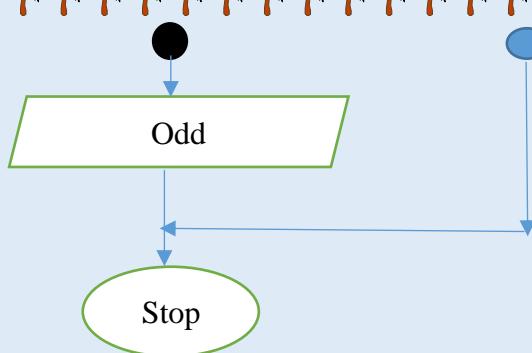
☞ **Algorithm:**

1. Start
2. Input A and B
3. Sum = A + B
4. Print Sum
5. Stop

☞ **Flowchart:**

(Start → Input A, B → Process: Sum = A + B → Output: Sum → Stop)


6. Write an algorithm and flowchart to check whether a number is even or odd.


☞ **Algorithm:**

1. Start
2. Input N
3. If $N \% 2 = 0$, then print "Even"
4. Else print "Odd"
5. Stop

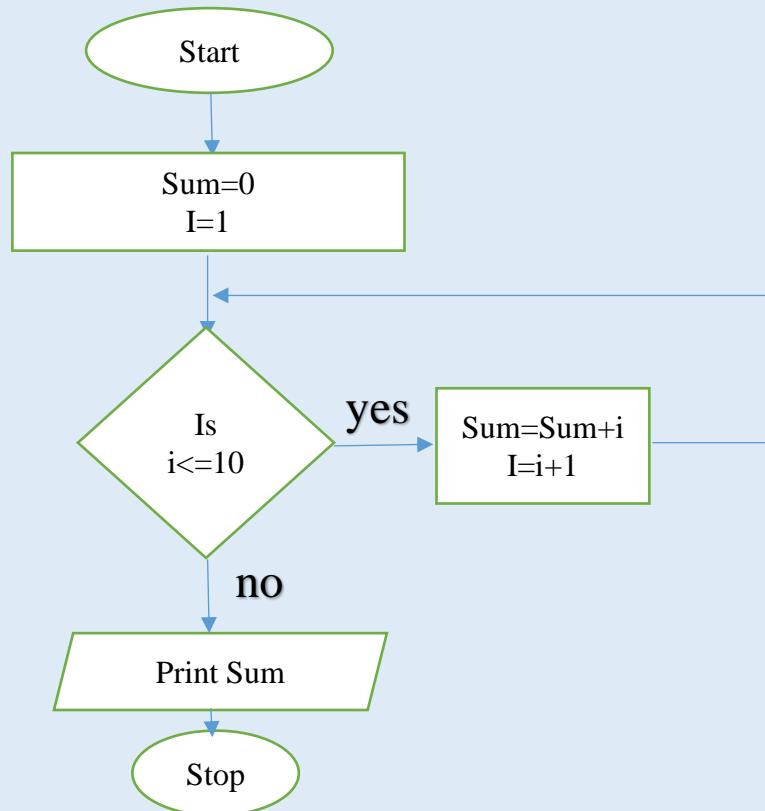
☞ **Flowchart:**

(Start → Input N → Decision: $N \% 2 = 0$ → Yes: Even, No: Odd → Stop)

7. Explain the importance of flowcharts in problem solving.

☞ Flowcharts are important because:

1. They provide a clear visual understanding of logic.
2. Easy to detect mistakes before coding.
3. Saves time in debugging.
4. Acts as a blueprint for writing programs.
5. Can be used for documentation and training purposes.


8. Write an algorithm and flowchart to calculate the sum of the first 10 natural numbers.

☞ Algorithm:

1. Start
2. Set Sum = 0, i = 1
3. Repeat while $i \leq 10$
 - o Sum = Sum + i
 - o $i = i + 1$
4. Print Sum
5. Stop

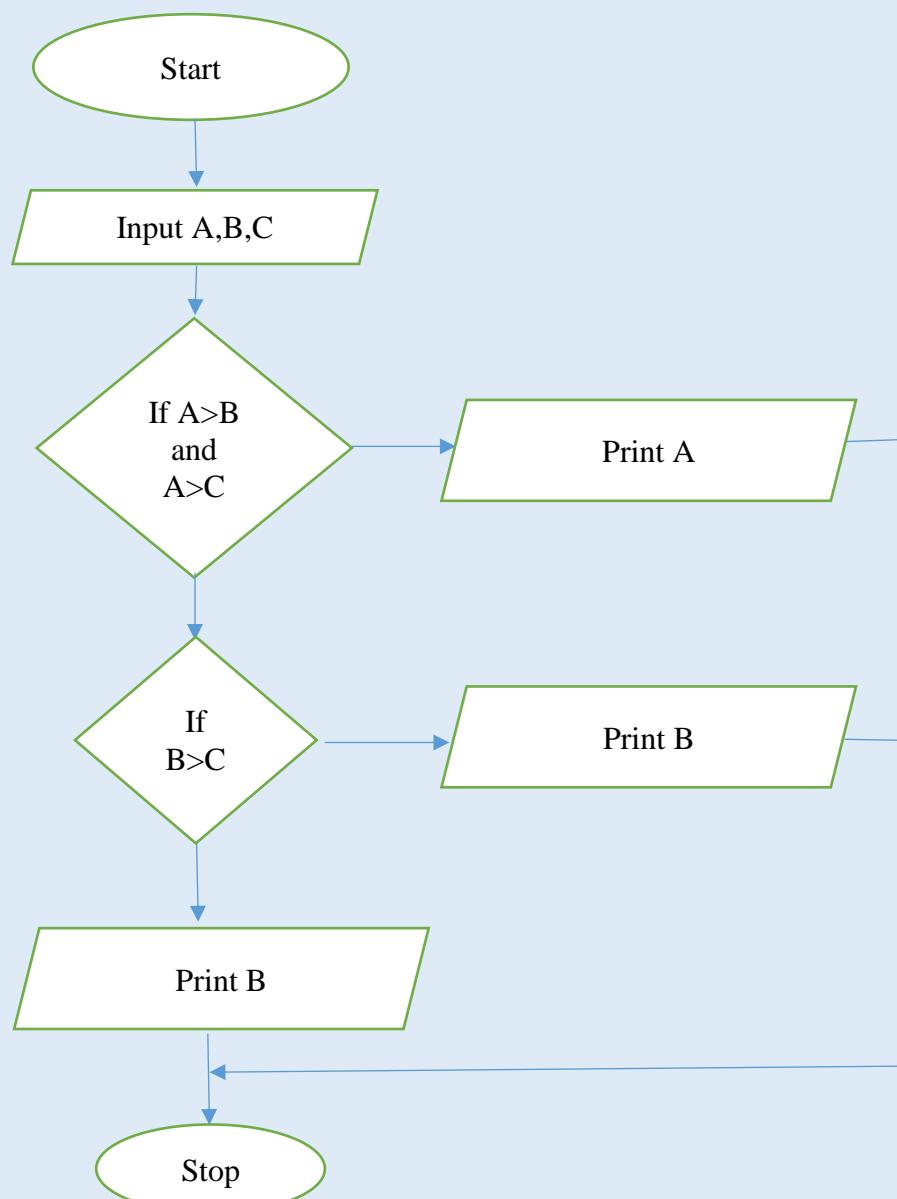
☞ Flowchart:

(Start → Initialize Sum=0, i=1 → Decision: $i \leq 10$ → Yes → Sum=Sum+i, $i=i+1$ → Loop back → No → Print Sum → Stop)

9. Explain the limitations of flowcharts.

☞ Limitations:

1. Time-consuming to draw.
2. Difficult to modify once prepared.
3. Not suitable for very complex programs.
4. Sometimes becomes too lengthy.
5. Cannot represent detailed logic.


10. Write an algorithm and flowchart to find the largest of three numbers.

☞ Algorithm:

1. Start
2. Input A, B, C
3. If $A > B$ and $A > C$, then Largest = A
4. Else if $B > C$, then Largest = B
5. Else Largest = C
6. Print Largest
7. Stop

☞ Flowchart:

(Start → Input A, B, C → Decision: $A > B$ and $A > C$ → Yes: A → No → Decision: $B > C$ → Yes: B → No: C → Print Largest → Stop)

