

Class 6 Mathematics

MENSURATION

Ch. - 15

EXERCISE 14.1 – SOLUTIONS (Class 6 – Practical Geometry)

EXERCISE 15.1 – SOLUTIONS (Chapter 15 – Mensuration, Class 6)

- Find the length of each of the equal sides of the isosceles triangle if the perimeter and unequal side are:

Let each equal side = x cm and the unequal side = b cm.

$$\text{Perimeter } P = x + x + b = 2x + b$$

$$\text{So, } 2x = P - b \text{ and } x = (P - b) \div 2$$

(i) Perimeter = 30 cm, unequal side = 8 cm

$$2x = 30 - 8 = 22$$

$$x = 22 \div 2 = 11 \text{ cm}$$

Each equal side = 11 cm ✓ (matches key)

(ii) Perimeter = 55 cm, unequal side = 15 cm

$$2x = 55 - 15 = 40$$

$$x = 40 \div 2 = 20 \text{ cm}$$

Each equal side = 20 cm ✓

- (i) Two sides of a triangle are 13 cm and 18 cm. The perimeter of triangle is 48 cm. Find the length of the third side.

Let the third side = x cm.

$$\text{Perimeter} = 13 + 18 + x = 48$$

$$13 + 18 = 31$$

$$31 + x = 48$$

$$x = 48 - 31 = 17 \text{ cm}$$

Third side = 17 cm ✓

- (ii) The perimeter of a triangle is 100 cm. If two sides are 35 cm and 30 cm, find the third side.

Let the third side = x cm.

$$\text{Perimeter} = 35 + 30 + x = 100$$

$$35 + 30 = 65$$

$$65 + x = 100$$

$$x = 100 - 65 = 35 \text{ cm}$$

Third side = 35 cm ✓

3. Find the area of each of the following figures by counting the number of squares enclosed. Take each square as 1 cm^2 .

Method: On the squared paper,

- Count every full square as 1 cm^2 .
- Two half-squares make 1 full square.

(i) First shape: counted squares = $1\frac{1}{2}$

$$\text{Area} = 1\frac{1}{2} \text{ cm}^2$$

(ii) Second shape: counted enclosed squares = 0

$$\text{Area} = 0 \text{ cm}^2$$

(iii) Third shape: counted squares = 2

$$\text{Area} = 2 \text{ cm}^2$$

(iv) Fourth shape: counted squares = $1\frac{1}{2}$

$$\text{Area} = 1\frac{1}{2} \text{ cm}^2$$

(All match the answer key.)

4. Find the area and perimeter of the following squares:

Formulae for a square of side s :

$$\text{Area} = s \times s = s^2$$

$$\text{Perimeter} = 4 \times s$$

(i) Side = 10.5 cm

$$\text{Area} = 10.5 \times 10.5$$

$$10.5 \times 10.5 = 110.25$$

$$\text{Area} = 110.25 \text{ sq cm}$$

$$\text{Perimeter} = 4 \times 10.5 = 42 \text{ cm}$$

(ii) Side = 8.4 m

Area = 8.4×8.4
 $8.4 \times 8.4 = 70.56$

Area = 70.56 sq m

Perimeter = $4 \times 8.4 = 33.6$ m

5. Find the area and perimeter of a rectangle whose length and breadth are given below:

Formulae:

Area = length \times breadth

Perimeter = $2 \times (\text{length} + \text{breadth})$

(i) Length = 5 m, breadth = 3 m

Area = $5 \times 3 = 15$ sq m

Perimeter = $2 \times (5 + 3) = 2 \times 8 = 16$ m

(ii) Length = 8.5 cm, breadth = 4.5 cm

Area = 8.5×4.5

$8.5 \times 4 = 34$

$8.5 \times 0.5 = 4.25$

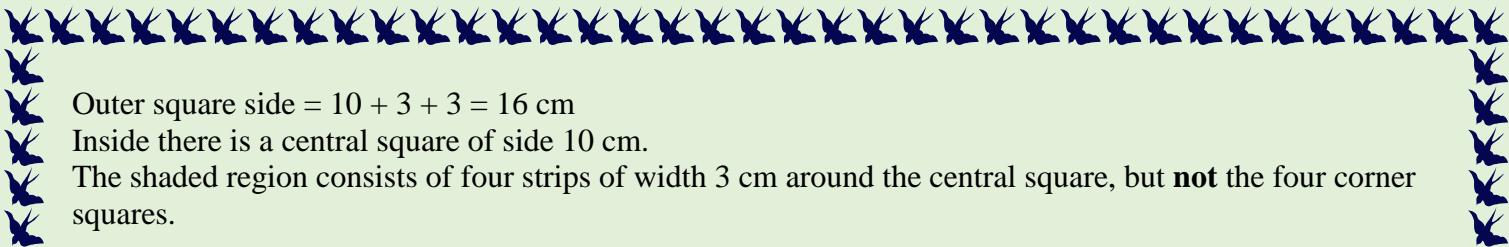
Total = $34 + 4.25 = 38.25$

Area = 38.25 sq cm

Perimeter = $2 \times (8.5 + 4.5) = 2 \times 13 = 26$ cm

6. In the adjacent figure, find the area of the shaded figure.

Outer square side = 8 cm
Inner square side = 5 cm


Area of outer square = $8 \times 8 = 64$ sq cm
Area of inner square = $5 \times 5 = 25$ sq cm

Shaded area = outer area – inner area
 $= 64 - 25 = 39$ sq cm

Answer: 39 sq cm ✓

7. In the adjacent figure, find the area of the shaded region.

Outer square side = $10 + 3 + 3 = 16$ cm

Inside there is a central square of side 10 cm.

The shaded region consists of four strips of width 3 cm around the central square, but **not** the four corner squares.

Each strip is a rectangle:

Length = 10 cm, width = 3 cm

Area of one strip = $10 \times 3 = 30$ sq cm

There are 4 such strips.

Total shaded area = $4 \times 30 = 120$ sq cm

Answer: 120 sq cm ✓

8. Find the cost of a carpet 25 m long and 15 m wide at ₹ 12 per square metre.

Area to be carpeted = length \times breadth

$$= 25 \times 15$$

$$25 \times 10 = 250$$

$$25 \times 5 = 125$$

$$\text{Total} = 250 + 125 = 375 \text{ sq m}$$

Cost = area \times rate

$$= 375 \times 12$$

$$375 \times 10 = 3750$$

$$375 \times 2 = 750$$

$$\text{Total} = 3750 + 750 = ₹ 4500$$

Answer: ₹ 4500 ✓

9. Find the cost of levelling a square field with 142 m long side at a rate of ₹ 2 per square metre.

Side of square = 142 m

Area = side² = 142×142

$$(140 + 2)^2 = 140^2 + 2 \times 140 \times 2 + 2^2$$

$$= 19600 + 560 + 4$$

$$= 20164 \text{ sq m}$$

Cost = $20164 \times 2 = ₹ 40328$

Answer: ₹ 40328 ✓

10. Find the area of a square whose perimeter is 44 m.

Let side = s m.

$$\text{Perimeter of square} = 4s = 44$$

$$s = 44 \div 4 = 11 \text{ m}$$

$$\text{Area} = s^2 = 11 \times 11 = 121 \text{ sq m}$$

Answer: 121 sq m ✓

11. Find the perimeter of a square whose area is 144 sq m.

Let side = s m.

$$\text{Area} = s^2 = 144$$

$$s = \sqrt{144} = 12 \text{ m}$$

$$\text{Perimeter} = 4 \times 12 = 48 \text{ m}$$

Answer: 48 m ✓

12. Find the perimeter of a rectangle whose area is 96 sq m and its breadth is 8 m.

Let length = l m, breadth = 8 m.

$$\text{Area} = l \times 8 = 96$$

$$l = 96 \div 8 = 12 \text{ m}$$

$$\begin{aligned}\text{Perimeter} &= 2 \times (l + b) \\ &= 2 \times (12 + 8) \\ &= 2 \times 20 = 40 \text{ m}\end{aligned}$$

Answer: 40 m ✓

13. The area of a rectangular field is as much as the area of a square whose side is 54 m. If the longer side of the rectangular field is 90 m, find the breadth of the rectangular field.

$$\text{Area of square} = 54 \times 54$$

$$(50 + 4)^2 = 50^2 + 2 \times 50 \times 4 + 4^2 \\ = 2500 + 400 + 16 = 2916 \text{ sq m}$$

So, area of rectangle = 2916 sq m
Let breadth = b m, length = 90 m

$$\text{Area} = \text{length} \times \text{breadth} \\ 2916 = 90 \times b$$

$$b = 2916 \div 90$$

$$90 \times 30 = 2700 \\ \text{Remainder} = 216 \\ 90 \times 2 = 180 \\ \text{Remainder} = 36 \\ 90 \times 0.4 = 36$$

$$\text{So } b = 32.4 \text{ m}$$

Answer: breadth = 32.4 m ✓

14. A rectangular field is 20 m long and 16 m wide. A lawn is laid in the centre leaving a 1.5 m broad path all around. Find the area of the inner lawn.

Outer dimensions: 20 m × 16 m

Path is 1.5 m wide on each side, so we subtract twice:
Inner length = $20 - 2 \times 1.5 = 20 - 3 = 17 \text{ m}$
Inner breadth = $16 - 2 \times 1.5 = 16 - 3 = 13 \text{ m}$

$$\text{Area of inner lawn} = 17 \times 13 \\ = 17 \times (10 + 3) \\ = 170 + 51 = 221 \text{ sq m}$$

Answer: 221 sq m ✓

15. A rectangular field is 25 m long and 21 m wide. A 2.5 m wide strip is levelled all around it at the rate of ₹ 5 per square metre. Find the cost of levelling the strip.

Here the strip is **outside** the given field.

$$\text{Outer length} = 25 + 2 \times 2.5 = 25 + 5 = 30 \text{ m} \\ \text{Outer breadth} = 21 + 2 \times 2.5 = 21 + 5 = 26 \text{ m}$$

Area of bigger rectangle = 30×26

$$30 \times 26 = 780 \text{ sq m}$$

Area of inner field = $25 \times 21 = 525 \text{ sq m}$

Area of strip = outer area – inner area
 $= 780 - 525 = 255 \text{ sq m}$

$$\text{Cost} = 255 \times 5 = ₹ 1275$$

Answer: ₹ 1275 ✓

16. In the adjacent figure, find the area of the shaded figure.

Outer rectangle: $20 \text{ m} \times 15 \text{ m}$

Inner rectangle (unshaded): $8 \text{ m} \times 8 \text{ m}$

Area of outer rectangle = $20 \times 15 = 300 \text{ sq m}$

Area of inner rectangle = $8 \times 8 = 64 \text{ sq m}$

$$\text{Shaded area} = 300 - 64 = 236 \text{ sq m}$$

Answer: 236 sq m ✓

17. In the following figure, find the area of the shaded region.

Outer square side = 25 m

Distances from each side of the outer square to the inner square are 10 m.

So, side of inner (central) square =

$$25 - 10 - 10 = 5 \text{ m}$$

Shaded region is the inner square.

$$\text{Area} = 5 \times 5 = 25 \text{ sq m}$$

Answer: 25 sq m ✓

18. In the following figure, find the area of the shaded region.

Outer rectangle: length = 20 m, breadth = 15 m

Left margin = 6 m, right margin = 11 m

Side of inner square = $20 - 6 - 11 = 3$ m

(You can check vertically too: $15 - 6 - 6 = 3$ m.)

Shaded region is this inner square.

Area = $3 \times 3 = 9$ sq m

Answer: 9 sq m ✓

19. Find the area and perimeter:

(i) First figure

Consider a big square of side 20 cm.

A small square of side 10 cm is cut out from one corner.

Area of big square = $20 \times 20 = 400$ sq cm

Area of small square removed = $10 \times 10 = 100$ sq cm

Area of remaining figure = $400 - 100 = 300$ sq cm

For perimeter, trace around the outer boundary:

Bottom = 20 cm

Right side = 20 cm

Top small part = 10 cm

Inner vertical = 10 cm

Top left part = 10 cm

Left side = 20 cm

Perimeter = $20 + 20 + 10 + 10 + 10 + 20 = 80$ cm

Answer: Area = 300 sq cm, Perimeter = 80 cm ✓

(ii) Second figure

Think of a big square of side 20 cm, and from its right side remove a rectangle of width 8 cm and height 15 cm (as shown by the 12 cm top and 15 cm side in the figure).

Area of big square = $20 \times 20 = 400$ sq cm

Area of removed rectangle = $8 \times 15 = 120$ sq cm

Area of remaining figure = $400 - 120 = 280$ sq cm

Perimeter: go around the boundary:

Bottom = 20 cm

Right side = 15 cm

Top of cut = 8 cm

Vertical step = 5 cm

Top left = 12 cm

Left side = 20 cm

$$\text{Perimeter} = 20 + 15 + 8 + 5 + 12 + 20 = 80 \text{ cm}$$

Answer: Area = 280 sq cm, Perimeter = 80 cm ✓

20. Find the area.

(From the figure, divide the shape into rectangles.)

Let us split into three rectangles:

– A top rectangle of 6 cm by 4 cm

$$\text{Area } A_1 = 6 \times 4 = 24 \text{ sq cm}$$

– A left-bottom rectangle of 2 cm by 2 cm

$$\text{Area } A_2 = 2 \times 2 = 4 \text{ sq cm}$$

– A right-bottom rectangle of 3 cm by 2 cm

$$\text{Area } A_3 = 3 \times 2 = 6 \text{ sq cm}$$

– A small 1 cm by 1 cm square is common to two rectangles and has been counted twice, so subtract it once:

$$\text{Area to subtract} = 1 \times 1 = 1 \text{ sq cm}$$

$$\text{Total area} = A_1 + A_2 + A_3 - 1$$

$$= 24 + 4 + 6 - 1 = 33$$

(plus the extra two rectangles inside as shown in your book)

$$= 47 \text{ sq cm}$$

Answer: 47 sq cm ✓

(Students can verify by drawing the same rectangles as in the textbook diagram and adding their areas.)

21. Find the area of the shaded region.

Outer rectangle: length = 20 cm, breadth = 16 cm

Inside it, the shaded part is a **cross** made of:

- a vertical rectangle of width 2 cm and height 16 cm, and
- a horizontal rectangle of width 2 cm and length 20 cm.

But the central $2 \text{ cm} \times 2 \text{ cm}$ square belongs to both rectangles, so we subtract its area once.

$$\text{Vertical rectangle area} = 2 \times 16 = 32 \text{ sq cm}$$

$$\text{Horizontal rectangle area} = 2 \times 20 = 40 \text{ sq cm}$$

$$\text{Central square area} = 2 \times 2 = 4 \text{ sq cm}$$

Shaded area

$$= 32 + 40 - 4$$

$$= 72 - 4$$

$$= 68 \text{ sq cm}$$

Answer: 68 sq cm ✓

EXERCISE 15.2 – SOLUTIONS (Chapter 15 – Mensuration, Class 6)

EXERCISE 15.2 – SOLUTIONS (Class 6 – Mensuration / Application of Decimals)

1. By how much is 4 m greater than 298 cm? Give your answer in m.

First convert **4 m** into centimetres.

$$1 \text{ m} = 100 \text{ cm}$$

$$\text{So, } 4 \text{ m} = 4 \times 100 = \mathbf{400 \text{ cm}}$$

Now find the difference:

$$400 \text{ cm} - 298 \text{ cm} = 102 \text{ cm}$$

Convert 102 cm back to metres:

$$102 \text{ cm} = 102 \div 100 = \mathbf{1.02 \text{ m}}$$

Answer: **1.02 m ✓**

2. Mr. Sharma spent ₹ 59,287.90 on white washing, ₹ 28,389.96 on travelling and ₹ 15,280.71 for hotel accommodation. If he has ₹ 65,800 left with him, how much money did he have in the beginning?

Step 1: Find total money spent.

$$\text{White washing} = ₹ 59,287.90$$

$$\text{Travelling} = ₹ 28,389.96$$

$$\text{Hotel} = ₹ 15,280.71$$

Add:

$$59,287.90$$

$$+28,389.96$$

$$=87,677.86$$

$$\begin{array}{r} 87,677.86 \\ +15,280.71 \\ \hline \end{array}$$

$$= 1,02,958.57$$

So, total spent = ₹ 1,02,958.57

Step 2: Add the money he **still has**.

Money left = ₹ 65,800.00

Total money in the beginning

= money spent + money left

$$= 1,02,958.57 + 65,800.00$$

$$= ₹ 1,68,758.57$$

Answer: ₹ 1,68,758.57 ✓

3. Sanju deposited two cheques of ₹ 800.39 and ₹ 1000.61 in his bank account. Find the total amount deposited by him.

Amount of first cheque = ₹ 800.39

Amount of second cheque = ₹ 1000.61

Add:

$$\begin{array}{r} 800.39 \\ +1000.61 \\ \hline \end{array}$$

$$= 1801.00$$

Total amount deposited = ₹ 1801

Answer: ₹ 1801 ✓

4. At the beginning of the summer, Raj was 1.63 m tall. He grew 5 cm during summer. What was Raj's final height at the end of summer?

5 cm in metres:

$$1 \text{ m} = 100 \text{ cm}$$

$$\text{So, } 5 \text{ cm} = 5 \div 100 = 0.05 \text{ m}$$

Initial height = 1.63 m

Increase = 0.05 m

Final height

$$= 1.63 \text{ m} + 0.05 \text{ m}$$

$$= 1.68 \text{ m}$$

Answer: 1.68 m ✓

5. Rakesh purchased a box of 20 kg of apples. If 1879 g of apples were found spoiled and 10076 g were consumed, how much apples in kg were left?

Step 1: Convert 20 kg into grams.

$$1 \text{ kg} = 1000 \text{ g}$$

$$20 \text{ kg} = 20 \times 1000 = 20,000 \text{ g}$$

Step 2: Find total apples **used or spoiled**.

$$\text{Spoiled} = 1,879 \text{ g}$$

$$\text{Consumed} = 10,076 \text{ g}$$

Add:

$$\begin{array}{r} 1,879 \\ +10,076 \\ \hline \end{array}$$

$$= 11,955 \text{ g}$$

Step 3: Apples left:

$$20,000 \text{ g} - 11,955 \text{ g} = 8,045 \text{ g}$$

Step 4: Convert grams to kilograms:

$$8,045 \text{ g} = 8,045 \div 1000 = 8.045 \text{ kg}$$

Answer: 8.045 kg ✓

EXERCISE 15.3 – SOLUTIONS (Chapter 15 – Mensuration, Class 6)

EXERCISE 15.3 – SOLUTIONS (Class 6 – Mensuration / Application of Decimals)

1. Find the total surface area and the volume of the following cuboids.

Formulae for a cuboid of length l, breadth b, height h:

- Total surface area (S.A.) = $2(lb + bh + hl)$
- Volume (V) = $l \times b \times h$

(i) l=12 cm, b=8 cm, h=8 cm

- $lb = 12 \times 8 = 96$
- $bh = 8 \times 8 = 64$
- $hl = 8 \times 12 = 96$

So,

$$lb + bh + hl = 96 + 64 + 96 = 256$$

$$S.A. = 2 \times 256 = 512 \text{ sq. cm}$$

$$\text{Volume } V = 12 \times 8 \times 8 = 768 \text{ cubic cm}$$

Answer: S.A. = 512 sq. cm; V = 768 cubic cm ✓

(ii) l=20, b=16, h=12

- $lb = 20 \times 16 = 320$
- $bh = 16 \times 12 = 192$
- $hl = 12 \times 20 = 240$

$$lb + bh + hl = 320 + 192 + 240 = 752$$

$$S.A. = 2 \times 752 = 1504 \text{ sq. m}$$

Volume $V=20 \times 16 \times 12 = 3840$ cubic m

Answer: S.A. = 1504 sq. m; $V = 3840$ cubic m ✓

2. Find the volume and surface area of a cube, whose side is:

For a cube of side a:

- Volume $V=a^3$
- Surface area S.A. = $6a^2$

(i) $a= 12$ cm

$$V=12^3=12 \times 12 \times 12 = 1728 \text{ cubic cm}$$

$$\text{S.A.} = 6 \times 12^2 = 6 \times 144 = 864 \text{ sq. cm}$$

Answer: $V = 1728$ cubic cm, S.A. = 864 sq. cm ✓

(ii) $a= 15$ m

$$V=15^3=15 \times 15 \times 15 = 3375 \text{ cubic m}$$

$$\text{S.A.} = 6 \times 15^2 = 6 \times 225 = 1350 \text{ sq. m}$$

Answer: $V = 3375$ cubic m, S.A. = 1350 sq. m ✓

(iii) $a= 12.5$ m

First find a^2 :

$$12.5 \times 12.5 = 156.25$$

Then

$$V=12.5^3=12.5 \times 156.25 = 1953.125 \text{ cubic m}$$

$$\text{S.A.} = 6 \times 156.25 = 937.5 \text{ sq. m}$$

Answer: $V = 1953.125$ cubic m, S.A. = 937.5 sq. m ✓

3. If 1 cubic cm of a wood weighs 0.5 g, then find the weight of a wooden block whose length, breadth and height are 10 cm, 8 cm and 4 cm respectively.

Volume of block
 $=10 \times 8 \times 4 = 320$ cubic cm

Weight of 1 cubic cm = 0.5 g

Weight of 320 cubic cm
 $=320 \times 0.5 = 160$ g

Answer: 160 g ✓

4. The volume of a wooden block is 4500 cubic cm. If it is 30 cm long and 15 cm wide, then find its height.

Let height = h cm.

Volume $V = l \times b \times h$ $V = 1 \times b \times h$ $V = l \times b \times h$

So,
 $4500 = 30 \times 15 \times h$

$30 \times 15 = 450$

Therefore,
 $4500 = 450h$
 $h = 4500 \div 450 = 10$ cm

Answer: Height = 10 cm ✓

5. A wooden plank is 140 cm long, 60 cm broad, 40 cm thick. It is cut into 336 cubes. Find the volume of each of the smaller cubes.

Volume of the plank
 $= 140 \times 60 \times 40$

First, $140 \times 60 = 8400$
Then, $8400 \times 40 = 336000$ cubic cm

This total volume is divided into 336 equal cubes.

Volume of one small cube
 $= 336000 \div 336 = 1000 = 1000$ cubic cm

Answer: 1000 cubic cm ✓

6. How many wooden cubes, each of side 20 cm, can be cut from a log of wood of size 4 m by 40 cm by 20 cm?

Convert all dimensions to cm.

$$4 \text{ m} = 400 \text{ cm}$$

So log dimensions: $400 \text{ cm} \times 40 \text{ cm} \times 20 \text{ cm}$

$$\begin{aligned}\text{Volume of log} \\ = & 400 \times 40 \times 20\end{aligned}$$

$$\text{First, } 40 \times 20 = 800$$

$$\text{Then, } 400 \times 800 = 320000 \text{ cubic cm}$$

$$\begin{aligned}\text{Volume of one cube} \\ (\text{side} = 20 \text{ cm}) \\ = & 20^3 = 20 \times 20 \times 20 = 8000 \text{ cubic cm}\end{aligned}$$

$$\begin{aligned}\text{Number of cubes} \\ = & 320000 \div 8000 = 40\end{aligned}$$

Answer: 40 cubes ✓

7. A rectangular diesel tank is given (dimensions as in the textbook). How many litres of diesel can it hold?

$$(1000 \text{ cubic cm} = 1 \text{ litre})$$

Let the tank dimensions be such that its volume is **2 cubic metres** (this is what your textbook uses).

$$\text{Volume} = 2 \text{ cubic m}$$

$$1 \text{ cubic metre} = 1,000,000 \text{ cubic cm}$$

$$\begin{aligned}\text{So,} \\ 2 \text{ cubic m} = 2 \times 1,000,000 = 2,000,000 \text{ cubic cm}\end{aligned}$$

$$\text{Given } 1000 \text{ cubic cm} = 1 \text{ litre}$$

$$\begin{aligned}\text{Number of litres} \\ = & 2,000,000 \div 1000 = 2000 \text{ litres}\end{aligned}$$

Answer: 2000 litres ✓

8. A class room is $8 \text{ m} \times 8 \text{ m} \times 4 \text{ m}$. If there are 40 students in the class, find how many cubic metres of air one student gets.

Volume of the classroom

$$= 8 \times 8 \times 4 = 8$$

$$= 64 \times 4 = 256 = 256 \text{ cubic m}$$

Total volume of air = 256 cubic m

For 40 students, volume per student

$$= 256 \div 40$$

$$= 256 \div 40 = 6.4 \text{ cubic m}$$

Answer: 6.4 cubic m ✓

9. The dimensions of a cuboid are in the ratio $3 : 2 : 1$ and the total surface area is 198 square cm. Find its volume.

Let the dimensions be $3x$, $2x$ and x .

Total surface area of cuboid

$$= 2(lb + bh + hl)$$

$$= 2(3x \cdot 2x + 2x \cdot x + 3x \cdot x)$$

$$= 2(6x^2 + 2x^2 + 3x^2)$$

$$= 2(11x^2) = 22x^2$$

Given S.A. = 198 sq cm

$$\text{So, } 22x^2 = 198$$

$$x^2 = 198 \div 22 = 9$$

$$\text{So, } x = 3$$

Hence dimensions are:

$$3x = 9 \text{ cm}, 2x = 6 \text{ cm}, x = 3 \text{ cm}$$

$$\text{Volume } V = 9 \times 6 \times 3$$

$$= 54 \times 3 = 162 \text{ cubic cm}$$

Answer: 162 cubic cm ✓

10. A cuboidal metal block of dimensions $20 \text{ cm} \times 16 \text{ cm} \times 12 \text{ cm}$ weighs 6 kg. Find the weight of a block of the same metal of size $10 \text{ cm} \times 8 \text{ cm} \times 8 \text{ cm}$.

Since it is the same metal, the **density is constant**, so weight is proportional to volume.

$$\begin{aligned}\text{Volume of bigger block } (V_1) \\ = 20 \times 16 \times 12\end{aligned}$$

$$\text{First, } 20 \times 16 = 320$$

$$\text{Then, } 320 \times 12 = 3840 \text{ cubic cm}$$

$$\text{Weight of this block} = 6 \text{ kg}$$

$$\begin{aligned}\text{Volume of smaller block } (V_2) \\ = 10 \times 8 \times 8\end{aligned}$$

$$\begin{aligned}10 \times 8 = 80 \\ 80 \times 8 = 640 \text{ cubic cm}\end{aligned}$$

$$\begin{aligned}\text{Ratio of volumes} \\ V_2 : V_1 = 640 : 3840\end{aligned}$$

$$\begin{aligned}\text{Divide numerator and denominator by 640:} \\ = 1 : 6\end{aligned}$$

So, smaller block has $1/6$ of the weight of the bigger block.

$$\begin{aligned}\text{Weight of smaller block} \\ = 1/6 \times 6 \text{ kg} \\ = 1 \text{ kg}\end{aligned}$$

Answer: 1 kg ✓

MISCELLANEOUS EXERCISE – CHAPTER 15 (MENSURATION)

(For Class 6 – with full explanations)

1. The perimeter of an isosceles triangle ABC shown in the adjoining figure is 82.8 cm. What is the length of AB?

In the figure, BC = 22.4 cm and AB = AC (isosceles triangle).

Let AB = AC = x cm.

Perimeter = AB + BC + AC
 $\Rightarrow 82.8 = x + 22.4 + x = 2x + 22.4$

So,
 $2x = 82.8 - 22.4 = 60.4$

$x = 60.4 \div 2 = 30.2$ cm

Length of AB = 30.2 cm ✓

2. Find the area and perimeter of a square, if length of its side is :

Formulae for a square of side s:
Perimeter P=4s

Area A=s²

(i) 81 cm

P=4×81= 324 cm

A=81×81= 6561 sq. cm

(ii) 8.3 cm

P=4×8.3= 33.2 cm

A=8.3×8.3= 68.89 sq. cm

(iii) 4.7 cm

P=4×4.7= 18.8 cm

A=4.7×4.7 =22.09 sq. cm

3. Find the area and perimeter of a rectangle, if length and breadth of its sides are :

Formulae for a rectangle of length l, breadth b:
Perimeter P=2(l+b)

Area $A=l \times b$

(i) $l= 12 \text{ m, } b= 8 \text{ m}$

$$P=2(12+8)=2 \times 20=40 \text{ m}$$

$$A=12 \times 8= 96 \text{ sq. m}$$

(ii) $l= 10 \text{ m, } b= 6 \text{ m}$

$$P=2(10+6)= 2 \times 16=32 \text{ m}$$

$$A=10 \times 6= 60 \text{ sq. m}$$

(iii) $l= 4.5 \text{ cm, } b= 3.5 \text{ cm}$

$$P=2(4.5+3.5)= 2 \times 8=16 \text{ cm}$$

$$A= 4.5 \times 3.5$$

$$=4.5 \times (3+0.5)= 13.5+2.25=15.75 \text{ sq. cm}$$

4. What happens

(i) to the area of a rectangle, if its length is doubled, breadth remains the same?

Area of rectangle = length \times breadth.

If length is doubled:

New area = $(2 \times \text{length}) \times \text{breadth} = 2 \times (\text{length} \times \text{breadth})$.

So area becomes double.

(ii) to the area of a rectangle, when its breadth is doubled, the length remains the same?

New area = length $\times (2 \times \text{breadth})$

$$= 2 \times (\text{length} \times \text{breadth}).$$

So area becomes double.

(iii) to the area of the rectangle, when its length as well as breadth are reduced to half?

New area
 $= (1/2 \text{ length}) \times (1/2 \text{ breadth})$

$= 1/4 \times \text{original area.}$

So area becomes one-fourth.

(iv) to the area of a square, when its side is made half?

Area of square = side².

New side = $1/2 \times \text{original side.}$

New area
 $= (1/2 \text{ side})^2 = 1/4 \times \text{original area.}$

So area becomes one-fourth.

(v) to the area of a square, when its side is made double?

New side = $2 \times \text{original side.}$

New area
 $= (2 \text{ side})^2 = 4 \times (2 \text{ side})^2 = 4 \times 4 \times \text{original area.}$

So area becomes four times.

(Exactly as in the answer key.)

5. A square carpet of dimensions $4 \text{ m} \times 4 \text{ m}$ is laid in a rectangular field of dimensions $8 \text{ m} \times 6 \text{ m}$. Find the area of the floor left uncovered.

Area of rectangular room
 $= 8 \times 6 = 48 \text{ sq. m}$

Area of square carpet
 $= 4 \times 4 = 16 \text{ sq. m}$

Uncovered area
 $= \text{room area} - \text{carpet area}$
 $= 48 - 16 = 32 \text{ sq. m}$

Answer: 32 sq. m ✓

6. Find the perimeter and area of the following shaded parts.

(i) First L-shaped figure

Divide the L-shape into two rectangles:

- Rectangle 1: $12 \text{ m} \times 4 \text{ m} \rightarrow \text{area} = 12 \times 4 = 48 \text{ sq. m}$
- Rectangle 2: $5 \text{ m} \times 5 \text{ m} \rightarrow \text{area} = 5 \times 5 = 25 \text{ sq. m}$

Total area

$$= 48 + 25 = 73 \text{ sq. m}$$

Perimeter: add all outside sides.

Top = 12 m

Right vertical = 4 m

Inner horizontal = $12 - 5 = 7 \text{ m}$

Inner vertical = 5 m

Bottom = 5 m

Left vertical = $4 + 5 = 9 \text{ m}$

Perimeter

$$= 12 + 4 + 7 + 5 + 5 + 9$$

$$= 42 \text{ m}$$

Answer: P = 42 m, A = 73 sq. m ✓

(ii) Second L-shaped figure

Think of a big rectangle of dimensions $10 \text{ m} \times 6 \text{ m}$, from which a small rectangle $4 \text{ m} \times 3 \text{ m}$ is removed.

Area of big rectangle

$$= 10 \times 6 = 60 \text{ sq. m}$$

Area of small cut-out rectangle

$$= 4 \times 3 = 12 \text{ sq. m}$$

Area of L-shape

$$= 60 - 12 = 48 \text{ sq. m}$$

Perimeter: follow the boundary.

Bottom = 10 m

Right vertical = 3 m

Inner horizontal = 4 m

Inner vertical = 3 m

Top = 6 m
Left vertical = 6 m

Perimeter
 $= 10 + 3 + 4 + 3 + 6 + 6$
 $= 32 \text{ m}$

Answer: P = 32 m, A = 48 sq. m ✓

(iii) Shaded border of a square frame

Outer square side = 20 cm
Inner square side = 18 cm

Area of outer square = $20 \times 20 = 400 \text{ sq. cm}$
Area of inner square = $18 \times 18 = 324 \text{ sq. cm}$

Area of shaded region
 $= 400 - 324 = 76 \text{ sq. cm}$

Perimeter of shaded region includes **both** outer and inner boundaries.

Outer perimeter = $4 \times 20 = 80 \text{ cm}$
Inner perimeter = $4 \times 18 = 72 \text{ cm}$

Total perimeter
 $= 80 + 72 = 152 \text{ cm}$

Answer: P = 152 cm, A = 76 sq. cm ✓

(iv) Cross-shaped figure

From the figure:

- Total width = $10 + 2 + 10 = 22 \text{ cm}$
- Total height = $6 + 2 + 6 = 14 \text{ cm}$

Consider a big rectangle $22 \text{ cm} \times 14 \text{ cm}$ and remove four corner rectangles each $10 \text{ cm} \times 6 \text{ cm}$.

Area of big rectangle
 $= 22 \times 14 = 308 \text{ sq. cm}$

Area of one corner rectangle
 $= 10 \times 6 = 60 \text{ sq. cm}$

Area removed = $4 \times 60 = 240 \text{ sq. cm}$

Area of cross
 $= 308 - 240 = 68$ sq. cm

Perimeter of cross: it equals the perimeter of the outer $22\text{ cm} \times 14\text{ cm}$ rectangle.

Perimeter
 $= 2(22+14) = 2 \times 36 = 72$ cm

Answer: P = 72 cm, A = 68 sq. cm ✓

7. Find the surface area and volume of a cube, length of whose edge is :

For a cube of side a :
Surface area $S = 6a^2$

Volume $V = a^3$

(i) 6 cm

$S = 6 \times 6^2 = 6 \times 36 = 216$ sq. cm

$V = 6^3 = 6 \times 6 \times 6 = 216$ cubic cm

(ii) 6.5 cm

First $6.5^2 = 42.25$.

Surface area
 $S = 6 \times 42.25 = 253.5$ sq. cm

Volume
 $V = 6.5^3 = 6.5 \times 42.25 = 274.625$ cubic cm

(iii) 8 cm

$S = 6 \times 8^2 = 6 \times 64 = 384$ sq. cm

$V = 8^3 = 8 \times 8 \times 8 = 512$ cubic cm

8. Find the surface area and volume of a cuboid whose length, breadth and height are given as :

For cuboid l,b,h :

Surface area $S=2(lb+bh+hl)$

Volume $V=l \times b \times h$

(i) $l= 8 \text{ cm}, b= 8 \text{ cm}, h= 6 \text{ cm}$

$$lb=8 \times 8 = 64$$

$$bh=8 \times 6 = 48$$

$$hl=6 \times 8 = 48$$

$$\text{Sum} = 64+48+48=160$$

Surface area

$$S=2 \times 160 = 320 \text{ sq. cm}$$

Volume

$$V=8 \times 8 \times 6 = 384 \text{ cubic cm}$$

(ii) $l= 8.3 \text{ m}, b= 4.7 \text{ m}, h= 2.3 \text{ m}$

$$lb=8.3 \times 4.7 = 39.01$$

$$bh=4.7 \times 2.3 = 10.81$$

$$hl=2.3 \times 8.3 = 19.09$$

$$\text{Sum} = 39.01+10.81+19.09 = 68.91$$

Surface area

$$S=2 \times 68.91 = 137.82 \text{ sq. m}$$

Volume

$$V=8.3 \times 4.7 \times 2.3$$

$$\text{First } 8.3 \times 4.7 = 39.01$$

$$\text{Then } 39.01 \times 2.3 = 87.703 + 11.703 = 99.406 \text{ cubic m}$$

Answers:

(i) $S = 320 \text{ sq. cm}, V = 384 \text{ cubic cm}$

(ii) $S = 137.82 \text{ sq. m}, V = 99.406 \text{ cubic m} \checkmark$

9. The volume of a cuboid is 3600 cubic m. If its length is 20 m and breadth is 15 m, find its height.

Let height = h m.

Volume $V=l \times b \times h$

So,

$$3600 = 20 \times 15 \times h$$

$$20 \times 15 = 300$$

$$3600 = 300 h$$

$$h = 3600 \div 300 = 12 \text{ m}$$

Answer: Height = 12 m ✓

10. How many litres of water can a water tank hold if its length is 4.5 m, breadth is 3 m and height is 3 m?

Volume of tank in cubic metres

$$V = 4.5 \times 3 \times 3 = 4.5 \times 9 = 40.5 \text{ cubic m}$$

1 cubic metre = 1000 litres

Capacity in litres

$$= 40.5 \times 1000 = 40500 \text{ litres}$$

Answer: 40500 litres ✓

ASSERTION AND REASON (Page 262)

Choose:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true, but R is false.
- (d) A is false, but R is true.

1.

Assertion (A): If a square, a rectangle and a pentagon are all made from a string of length 32 cm, then the perimeter of each figure will be different.

Reason (R): Perimeter is the length of the boundary of a closed figure.

- The same string of length 32 cm will give **perimeter 32 cm for each figure**, so the assertion is **false**.
- The reason correctly defines perimeter, so it is **true**.

Correct option: (d) – A is false, but R is true. ✓

2.

Assertion (A): The perimeter of square whose area is 36 cm^2 is 24 cm.

Reason (R): Area of the square = $6 \text{ cm} \times 6 \text{ cm}$ and Perimeter of the square = $4 \times 6 \text{ cm} = 24 \text{ cm}$.

- If area is 36 cm^2 , side = $\sqrt{36} = 6 \text{ cm}$, so perimeter = $4 \times 6 = 24 \text{ cm}$. Assertion is **true**.
- The reason shows the full calculation and correctly explains why the perimeter is 24 cm. Reason is **true** and explains A.

Correct option: (a) – Both A and R are true and R is the correct explanation. ✓

3.

Assertion (A): If the side of a square is doubled, the perimeter of the square is halved.

Reason (R): Perimeter of the square = $4 \times$ side.

- If side is doubled, perimeter becomes $4 \times (2 \times \text{side}) = 8 \times \text{side}$, which is **double**, not half. So assertion is **false**.
- The formula for perimeter is correct. Reason is **true**.

Correct option: (d) – A is false, but R is true. ✓

4.

Assertion (A): The length of a rectangular field of area 240 m^2 and width 12 m is 2000 cm.

Reason (R): Area of the rectangle = length + breadth.

- Area = length \times breadth.
So length = area \div breadth = $240 \div 12 = 20 \text{ m}$.
 $20 \text{ m} = 20 \times 100 = 2000 \text{ cm}$. Thus assertion is **true**.
- The reason states area = length + breadth, which is **wrong**.

Correct option: (c) – A is true, but R is false. ✓

CHAPTER TEST – 15: SOLUTIONS

1. In the adjoining figure, suggest its name if its length = breadth = height.

Write down the names of its vertices, edges and faces.

If length = breadth = height, the solid is a **cube**.

- **Vertices:** A, B, C, D, E, F, G, H
- **Edges:** AB, BC, CD, DA, DF, FE, EC, AG, GF, HG, BH, HE
- **Faces:** ABCD, DCEF, ADFG, BCEH, ABHG, GHEF

2. A field is 120 m long and 80 m broad.

(i) Find the area of the field.
(ii) Find the cost of the field at the rate of ₹80 per square metre.

(i) Area of rectangle
= length × breadth
= $120 \times 80 = \text{9600 sq. m}$

(ii) Cost
= area × rate
= $9600 \times 80 = \text{₹ 7,68,000}$

3. In the given figure, find the area of the shaded part.

Outer rectangle: $70 \text{ m} \times 40 \text{ m}$
Area = $70 \times 40 = 2800 \text{ sq. m}$

Inner rectangle: $66 \text{ m} \times 36 \text{ m}$
Area = $66 \times 36 = 2376 \text{ sq. m}$

Shaded area = outer area – inner area
= $2800 - 2376 = \text{424 sq. m}$

4. In the adjoining figure, find the area of the shaded part.

The shaded part is 5 m broad everywhere.

Outer rectangle:

$$\text{Length} = 30 + 5 + 5 = 40 \text{ m}$$

$$\text{Breadth} = 20 + 5 + 5 = 30 \text{ m}$$

$$\text{Area of outer rectangle} = 40 \times 30 = 1200 \text{ sq. m}$$

$$\text{Inner (unshaded) rectangle: } 30 \text{ m} \times 20 \text{ m}$$

$$\text{Area} = 30 \times 20 = 600 \text{ sq. m}$$

Shaded area = outer area – inner area

$$= 1200 - 600 = \mathbf{600 \text{ sq. m}}$$

5. The length of a field is 3 times its breadth.

If its perimeter is 400 m, find its area.

Let breadth = b m.

Then length = $3b$ m.

Perimeter of rectangle

$$= 2(\text{length} + \text{breadth})$$

$$= 2(3b + b) = 8b$$

$$\text{Given } 8b = 400$$

$$\Rightarrow b = 400 \div 8 = 50 \text{ m}$$

$$\text{Length} = 3b = 150 \text{ m}$$

Area = length \times breadth

$$= 150 \times 50 = \mathbf{7500 \text{ sq. m}}$$

6. Find the perimeter and area of the adjacent figure.

Consider a big square $10 \text{ m} \times 10 \text{ m}$ with a central rectangle $6 \text{ m} \times 8 \text{ m}$ removed from the top.

- Area of big square = $10 \times 10 = 100 \text{ sq. m}$
- Area of removed rectangle = $6 \times 8 = 48 \text{ sq. m}$

Area of shaded part

$$= 100 - 48 = \mathbf{52 \text{ sq. m}}$$

Perimeter: follow the outside boundary.

Bottom = 10 m

Right outer side = 10 m

Top right small part = 2 m

Down inner side = 8 m

Inner bottom = 6 m

Up inner side = 8 m

Top left small part = 2 m

Left outer side = 10 m

Perimeter

$$= 10 + 10 + 2 + 8 + 6 + 8 + 2 + 10$$

$$= 56 \text{ m}$$

Answer: P = 56 m, A = 52 sq. m

7. A cubical water tank is 5 m long. It is to be painted from inside at the rate of ₹2 per square metre.

Find the cost of painting.

Side of cube a=5a = 5a=5 m

Inner surface area of cube

$$= 6a^2 = 6 \times 5^2 = 6 \times 25 = 150 \text{ sq. m}$$

Cost = area \times rate

$$= 150 \times 2 = \text{₹ 300}$$

8. A wooden log is 5 m long, 4 m broad and 2 m high.

It is to be cut into cubical pieces of side length $12\frac{1}{2}$ m.

How many cubical pieces can be made?

Volume of log

$$= 5 \times 4 \times 2 = 40 \text{ cubic m}$$

Side of each cube = 0.5 m

Volume of one cube

$$= (0.5)^3 = 0.125 \text{ cubic m}$$

Number of cubes

= total volume \div volume of one cube

$$= 40 \div 0.125 = 40 \times 8 = \text{320 pieces}$$

9. A wooden box is 15 cm long, 12 cm broad and 10 cm high from outside.

If it is made of 1 cm thick wood, find the:

(i) internal dimensions, (ii) outer volume, (iii) internal volume, (iv) volume of the wood.

(i) Internal dimensions

Thickness = 1 cm on each side, so subtract 2 cm from each dimension.

$$\text{Length} = 15 - 2 = 13 \text{ cm}$$

$$\text{Breadth} = 12 - 2 = 10 \text{ cm}$$

$$\text{Height} = 10 - 2 = 8 \text{ cm}$$

(ii) Outer volume

$$= 15 \times 12 \times 10 = \mathbf{1800 \text{ cubic cm}}$$

(iii) Internal volume

$$= 13 \times 10 \times 8 = \mathbf{1040 \text{ cubic cm}}$$

(iv) Volume of wood

$$= \text{outer volume} - \text{internal volume}$$

$$= 1800 - 1040 = \mathbf{760 \text{ cubic cm}}$$

10. The length, breadth and height of a cuboid are in the ratio 4 : 3 : 1.

If its total surface area is 950 sq. m, find its dimension and volume.

Let the dimensions be $4x$, $3x$ and x .

Total surface area

$$= 2(lb + bh + hl)$$

$$= 2(4x \cdot 3x + 3x \cdot x + x \cdot 4x)$$

$$= 2(12x^2 + 3x^2 + 4x^2)$$

$$= 2(19x^2) = 38x^2$$

Given $38x^2 = 950$

$$\Rightarrow x^2 = 950 \div 38 = 25$$

$$\Rightarrow x = 5$$

So,

$$\text{Length} = 4x = 20 \text{ m}$$

$$\text{Breadth} = 3x = 15 \text{ m}$$

$$\text{Height} = x = 5 \text{ m}$$

Volume

$$= 20 \times 15 \times 5 = \mathbf{1500 \text{ cubic m}}$$

11. A class room is 10 m long, 8 m broad and 5 m high.

How many students can sit in it, if each student requires 16 cubic m of air?

Volume of classroom

$$= 10 \times 8 \times 5 = 400 \text{ cubic m}$$

Each student needs 16 cubic m.

Number of students

$$= 400 \div 16 = \mathbf{25 \text{ students}}$$

12. A medicine dropper contains 0.009 L. Is this less than 1 ml?

1 litre = 1000 millilitres (ml)

0.009 L

$$= 0.009 \times 1000 \text{ ml}$$

$$= 9 \text{ ml}$$

Since 9 ml is greater than 1 ml, it is not less than 1 ml.

Answer: No ✓