

Class 6

Mental Mathematics

Exercise – 1

EXERCISE – 1 : Mental Mathematics (Class 6)

Full solutions

1. Smallest and largest 5-digit numbers with 7 in tens place (no digit repeated)

Tens place must be 7: _ _ 7 _

Smallest 5-digit number

- Ten-thousands place must be the smallest non-zero digit → 1
- Thousands and ones places must be the next smallest unused digits → 0 and 2

Number: **10273**

Largest 5-digit number

- Ten-thousands place must be the greatest digit → 9
- Thousands and ones places: next greatest unused digits → 8 and 5

Number: **98675**

Answer: 10273, 98675 ✓

2. Minimum and maximum digits in sum of two 4-digit numbers

Smallest 4-digit number = 1000

Largest 4-digit number = 9999

Minimum digits in the sum

$1000 + 1000 = 2000 \rightarrow 4$ digits

Maximum digits in the sum

$9999 + 9999 = 19998 \rightarrow 5$ digits

Answer: 4, 5 ✓

3. Estimate without actual calculation

Round each number suitably.

- 49×61
 $\approx 50 \times 60 = 3000$
- $2404 - 305$
 $\approx 2400 - 300 = 2100$
- $87 + 21$
 $\approx 90 + 20 = 110$
- $492 \div 10$
 $\approx 490 \div 10 = 49$

Answers: (i) 3000 (ii) 2100 (iii) 110 (iv) 49 ✓

4. Make the number using 8, 5, 9, 4

Conditions:

- Biggest digit in hundreds place → 9 in hundreds
- 5 in ones place
- 4 in tens place
- 8 in thousands place

Number formed: **8945**

Answer: 8945 ✓

5. Find the number

Conditions:

- Greater than number of days in November → greater than 30
- Less than 72
- Even number
- Multiple of 7
- Sum of digits = number of days in a week = 7

Multiples of 7 between 31 and 71: 35, 42, 49, 56, 63, 70

Even numbers among them: 42, 56, 70

Check sum of digits:

- $4 + 2 = 6$
- $5 + 6 = 11$
- $7 + 0 = 7 \checkmark$

Only **70** satisfies all conditions.

Answer: 70 ✓

6. Determine the sum by suitable grouping

(i) $547 + 315 + 453$

Group 547 and 453:

$$547 + 453 = 1000$$

$$1000 + 315 = \mathbf{1315}$$

(ii) $578 + 287 + 213$

Group 287 and 213:

$$287 + 213 = 500$$

$$578 + 500 = \mathbf{1078}$$

(iii) $1053 + 273 + 247 + 727$

Group 1053 and 247: $1053 + 247 = 1300$

Group 273 and 727: $273 + 727 = 1000$

Total = $1300 + 1000 = \mathbf{2300}$

(iv) $1651 + 759 + 525 + 241 + 3349$

Group 1651 and 3349: $1651 + 3349 = 5000$

Group 759 and 241: $759 + 241 = 1000$

Now $5000 + 1000 + 525 = \mathbf{6525}$

Answers: (i) 1315 (ii) 1078 (iii) 2300 (iv) 6525 ✓

7. Multiply 94 and 985 by expressing 94 as a sum of two numbers

Write $94 = 100 - 6$

$$985 \times 94$$

$$= 985 \times (100 - 6)$$

$$= 985 \times 100 - 985 \times 6$$

$$= 98500 - 5910$$

$$= \mathbf{92590}$$

Answer: 92590 ✓

8. Products by suitable rearrangement

(i) $125 \times 8 \times 40 \times 25$

$$(125 \times 8) = 1000$$

$$(40 \times 25) = 1000$$

$$1000 \times 1000 = \mathbf{1000000}$$

(ii) $2197 \times 125 \times 8$

$$(125 \times 8) = 1000$$

$$2197 \times 1000 = \mathbf{2197000}$$

(iii) $20 \times 1548 \times 50$

$$(20 \times 50) = 1000$$

$$1548 \times 1000 = \mathbf{1548000}$$

(iv) $5544 \times 25 \times 40$

$$(25 \times 40) = 1000$$

$$5544 \times 1000 = \mathbf{5544000}$$

Answers:

(i) 1000000 (ii) 2197000 (iii) 1548000 (iv) 5544000 ✓

9. Product of odd numbers below 10

Odd numbers below 10: 1, 3, 5, 7, 9

Take any two:

$$1 \times 3 = 3 \text{ (odd)}$$

$$3 \times 5 = 15 \text{ (odd)}$$

$$5 \times 7 = 35 \text{ (odd)}$$

$$7 \times 9 = 63 \text{ (odd), etc.}$$

Every time, the product of two odd numbers is odd.

Answer: Yes ✓

MENTAL MATHEMATICS – CLASS 6

EXERCISE 2 – Based on Integers

1. Using number line, do the following :

(i) $6 + (-3)$

$6 + (-3)$ means move 6 units to the right from 0, then 3 units to the left.

$$6 - 3 = 3$$

Answer: 3

$$(ii) 10 - 15$$

$$10 - 15 = 10 + (-15).$$

From 10 move 15 units to the left, we reach -5 .

Answer: -5

$$(iii) -5 - 3$$

$$-5 - 3 = -5 + (-3).$$

From -5 move 3 units more to the left: $-6, -7, -8$.

Answer: -8

2. Find the sum of the following :

$$(i) 100 + (-55) + (-45)$$

$$= 100 - 55 - 45$$

$$\text{First, } 100 - 55 = 45$$

$$\text{Then, } 45 - 45 = 0$$

Answer: 0

$$(ii) (-5) + 3 + 7$$

$$= 3 + 7 - 5$$

$$= 10 - 5 = 5$$

Answer: 5

$$(iii) (-53) + (-5) + (-100)$$

All are negative, so add the numbers and put minus sign.

$$53 + 5 + 100 = 158$$

$$\text{So, sum} = -158$$

Answer: -158

3. Subtract the sum of -185 and 300 from -80 .

First, find the sum of -185 and 300 .

$$-185 + 300 = 300 - 185 = 115$$

Now subtract this sum from -80 :

$$-80 - 115 = -(80 + 115) = -195$$

Answer: -195

4. Write answer in the blanks :

(i) Which is greater: -4 or -5 ?

On the number line -4 lies to the right of -5 , so -4 is greater.

Answer: -4

(ii) Which is smaller: 9 or -99 ?

All negative numbers are less than positive numbers. So -99 is smaller.

Answer: -99

(iii) $0, -1, -2, -3, 4$ can be written in increasing order as:

Smallest to greatest: $-3, -2, -1, 0, 4$

Answer: $-3, -2, -1, 0, 4$

(iv) $0, -2, -3, -5$ can be written in ascending order as:

Ascending = increasing: $-5, -3, -2, 0$

Answer: $-5, -3, -2, 0$

(v) $1, -2, -4, 5$ can be written in descending order as:

Greatest to smallest: $5, 1, -2, -4$

Answer: $5, 1, -2, -4$

(vi) $0, -1, 2, -3, 5$ can be written in decreasing order as:

Decreasing = descending: $5, 2, 0, -1, -3$

Answer: $5, 2, 0, -1, -3$

(vii) Any number lying to the _____ of zero on the number line is positive, whereas any number lying to the _____ of zero is negative.

Positive numbers are to the right, negative numbers are to the left.

Answer: right, left

(viii) -9 lies to the _____ of 9 on the number line so that $-9 < 9$.

-9 is on the left of 9 .

Answer: left

(ix) The number 0 (zero) lies to the _____ of -2 on the number line so that $0 > -2$.

0 is on the right of -2 .

Answer: right

(x) Zero is greater than every _____ integer and less than every _____ integer.

Zero is greater than all negative integers and less than all positive integers.

Answer: negative, positive

MENTAL MATHEMATICS – EXERCISE 4

(Based on Sets)

Full Solutions with Explanation

1. Write True or False

(i) A set of the letters of the word ‘SCHOOL’ = {S, C, O, L, H}

Explanation:

The word “SCHOOL” contains the letters S, C, H, O, O, L.

In a set, **repetition is not allowed**, so repeated O and L appear only once.

Thus the set is correctly written.

Answer: True ✓ (matches answer key)

(ii) If $A = \{x : x = 3n - 5, n \in W\}$, then $-5 \in A$.

Explanation:

Take $n = 0$ (since $0 \in W$, the set of whole numbers).

$$x = 3(0) - 5 = -5.$$

So -5 is indeed a member of A .

Answer: True ✓ (matches answer key)

(iii) A collection of good persons of a country is a set.

Explanation:

The term “good persons” is **not well-defined** because goodness is a matter of opinion.

A set must have clearly defined elements.

So this cannot form a set.

Answer: False ✓ (matches answer key)

(iv) If $A = \{0, 3, 6, 9, \dots, 33\}$, then $n(A) = 11$.

Explanation:

This is an arithmetic sequence of multiples of 3 from 0 to 33.

General term = $3n$

Values: 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33

Number of terms = 12, not 11.

Answer: False ✓ (matches answer key)

2. State the following set in Set-builder form

Given:
 $A = \{\text{Integers greater than } -12 \text{ and divisible by } 5\}$

Explanation:
A number divisible by 5 can be written as $x = 5n$.
Condition: $x > -12$.
So the set-builder form is:

Answer:
 $A = \{x : x = 5n, n \in \mathbb{I}, x > -12\}$ ✓ (matches answer key)

3. State the following set in Roster form

Given:
 $A = \{x : x - 3 \leq 0, x \in \mathbb{W}\}$

Explanation:
Solve $x - 3 \leq 0 \rightarrow x \leq 3$.
Since $x \in \mathbb{W}$ (whole numbers): 0, 1, 2, 3.

Answer:
 $A = \{3, 2, 1, 0\}$ ✓ (matches answer key)

(Note: Order does not matter in sets; book uses 3, 2, 1, 0.)

**4. A set is defined as $P = \{x \mid x \in \mathbb{W} \text{ and } x < 0\}$.

What type of set is it?**

Explanation:
Whole numbers (\mathbb{W}) = $\{0, 1, 2, 3, \dots\}$.
No whole number is less than 0.
Therefore, the set has **no elements**.

Answer: Empty set ✓ (matches answer key)

MENTAL MATHEMATICS – CLASS 6

EXERCISE 5 – Based on Fractions

(Full solutions with steps)

1. Which of the following pairs has/have equivalent fractions?

To check equivalence, simplify or cross-multiply.

(i) $\frac{3}{5}$ and $\frac{15}{25}$

$$\frac{3}{5} = 3 \times 5 / 5 \times 5 = \frac{15}{25}$$

So they are equal.

(ii) $\frac{4}{5}$ and $\frac{28}{35}$

$$\frac{28}{35} = (28 \div 7) / (35 \div 7) = \frac{4}{5}$$

So they are equal.

(iii) $\frac{5}{6}$ and $\frac{25}{36}$

$\frac{5}{6} = 0.833\dots$ and $\frac{25}{36} \approx 0.694\dots$ (or cross-multiply: $5 \times 36 = 180$, $6 \times 25 = 150$; not equal).

Not equivalent.

(iv) $\frac{3}{7}$ and $\frac{21}{28}$

$\frac{3}{7} = 0.428\dots$, $\frac{21}{28} = 0.75$ (or $3 \times 28 = 84$, $7 \times 21 = 147$; not equal).

Not equivalent.

(v) $\frac{4}{11}$ and $\frac{9}{16}$

$4 \times 16 = 64$, $11 \times 9 = 99 \rightarrow$ not equal.

Not equivalent.

(vi) $\frac{7}{25}$ and $\frac{49}{175}$

$$\frac{49}{175} = (49 \div 7) / (175 \div 7) = \frac{7}{25}$$

So they are equal.

Answer: (i), (ii) and (vi) ✓

2. Write the following fractions in their lowest terms:

(i) $\frac{5}{10}$

Divide numerator and denominator by 5:

$$5 \div 5 / 10 \div 5 = \frac{1}{2}$$

(ii) $\frac{9}{27}$

$$\text{Divide by 9: } 9 \div 9 / 27 \div 9 = \frac{1}{3}$$

(iii) $\frac{6}{9}$

$$\text{Divide by 3: } 6 \div 3 / 9 \div 3 = \frac{2}{3}$$

(iv) $\frac{42}{49}$

$$\text{Divide by 7: } 42 \div 7 / 49 \div 7 = \frac{6}{7}$$

(v) $\frac{33}{77}$

$$\text{Divide by 11: } 33 \div 11 / 77 \div 11 = \frac{3}{7}$$

(vi) $81/144$

Common factor 9: $81 \div 9 / 144 \div 9 = 9/16$

Answers:

(i) $1/2$ (ii) $1/3$ (iii) $2/3$ (iv) $6/7$ (v) $3/7$ (vi) $9/16$ ✓

3. Write the fraction with given numerator (N) and denominator (D).
Classify as proper or improper.

(i) $N = 3, D = 5 \rightarrow 3/5$ (numerator < denominator → proper)

(ii) $N = 5, D = 9 \rightarrow 5/9$ (proper)

(iii) $N = 3, D = 7 \rightarrow 3/7$ (proper)

(iv) $N = 15, D = 4 \rightarrow 15/4$ (numerator > denominator → improper)

(v) $N = 9, D = 2 \rightarrow 9/2$ (improper)

(vi) $N = 7, D = 11 \rightarrow 7/11$ (proper)

Proper fractions: (i), (ii), (iii), (vi)

Improper fractions: (iv), (v) ✓

4. Write an equivalent fraction with the given denominator (D):

Rule: multiply numerator and denominator by same number.

(i) $3/5, D = 15$

$5 \times 3 = 15$, so multiply top by 3:

$3 \times 3 / 5 \times 3 = 9/15$

(ii) $2/7, D = 21$

$7 \times 3 = 21 \rightarrow$ multiply numerator by 3: $2 \times 3 = 6$

Fraction = $6/21$

(iii) $3/11, D = 44$

$11 \times 4 = 44 \rightarrow$ numerator $3 \times 4 = 12$

Fraction = $12/44$

(iv) $1/2, D = 12$

$2 \times 6 = 12 \rightarrow 1 \times 6 = 6$

Fraction = $6/12$

(v) $3/8, D = 40$

$8 \times 5 = 40 \rightarrow 3 \times 5 = 15$

Fraction = $15/40$

(vi) $7/9$, $D = 108$
 $9 \times 12 = 108 \rightarrow 7 \times 12 = 84$
Fraction = $84/108$

Answers:

(i) $9/15$ (ii) $6/21$ (iii) $12/44$ (iv) $6/12$ (v) $15/40$ (vi) $84/108$ ✓

5. Classify as like fractions or unlike fractions
(Like fractions = same denominator)

(i) $1/7, 1/7 \rightarrow$ same denominator \rightarrow like
(ii) $2/7, 3/9 \rightarrow$ denominators 7 and 9 \rightarrow unlike
(iii) $1/3, 2/3 \rightarrow$ same denominator 3 \rightarrow like
(iv) $2/11, 3/11, 5/11 \rightarrow$ same denominator 11 \rightarrow like
(v) $5/9, 9/5 \rightarrow$ denominators 9 and 5 \rightarrow unlike
(vi) $1/5, 5/6, 6/7 \rightarrow$ denominators 5, 6, 7 \rightarrow unlike

Like fractions: (i), (iii), (iv)

Unlike fractions: (ii), (v), (vi) ✓

6. Arrange the following fractions in ascending order
(Ascending = smallest to greatest)

(i) $1/11, 9/11, 3/11, 5/11, 2/11$

All have denominator 11; compare numerators:

1, 2, 3, 5, 9

Ascending order of fractions:

$1/11, 2/11, 3/11, 5/11, 9/11$

(ii) $1/9, 7/9, 3/9, 2/9, 5/9$

Same denominator 9 \rightarrow order by numerators:

1, 2, 3, 5, 7

Fractions: $1/9, 2/9, 3/9, 5/9, 7/9$

(iii) $2/5, 4/5, 1/5, 3/5$

Same denominator 5 \rightarrow numerators 1, 2, 3, 4

Fractions: $1/5, 2/5, 3/5, 4/5$

(iv) $1/24, 7/24, 13/24, 5/24, 11/24$

Same denominator 24 \rightarrow numerators 1, 5, 7, 11, 13

Fractions: $1/24, 5/24, 7/24, 11/24, 13/24$

Answers:

(i) $1/11, 2/11, 3/11, 5/11, 9/11$
(ii) $1/9, 2/9, 3/9, 5/9, 7/9$

(iii) $1/5, 2/5, 3/5, 4/5$
(iv) $1/24, 5/24, 7/24, 11/24, 13/24$ ✓

7. Arrange the following fractions in descending order
(Descending = greatest to smallest)

(i) $7/11, 2/11, 5/11, 1/11, 9/11$

Same denominator 11 → order numerators 9, 7, 5, 2, 1

Fractions: $9/11, 7/11, 5/11, 2/11, 1/11$

(ii) $3/7, 1/7, 5/7, 2/7, 6/7$

Same denominator 7 → numerators 6, 5, 3, 2, 1

Fractions: $6/7, 5/7, 3/7, 2/7, 1/7$

(iii) $5/9, 8/9, 1/9, 3/9, 7/9$

Same denominator 9 → numerators 8, 7, 5, 3, 1

Fractions: $8/9, 7/9, 5/9, 3/9, 1/9$

(iv) $1/6, 5/6, 2/6, 3/6, 4/6$

Same denominator 6 → numerators 5, 4, 3, 2, 1

Fractions: $5/6, 4/6, 3/6, 2/6, 1/6$

Answers:

(i) $9/11, 7/11, 5/11, 2/11, 1/11$

(ii) $6/7, 5/7, 3/7, 2/7, 1/7$

(iii) $8/9, 7/9, 5/9, 3/9, 1/9$

(iv) $5/6, 4/6, 3/6, 2/6, 1/6$ ✓

8. Add the following:

(i) $1/11 + 5/11 + 2/11$

Same denominator → add numerators:

$1 + 5 + 2 = 8 \rightarrow 8/11$

(ii) $11/25 + 1/25 + 8/25$

Same denominator 25 → $11 + 1 + 8 = 20 \rightarrow 20/25$

Simplify: divide by 5 → $4/5$

(iii) $1/2 + 1/3 + 1/4$

LCM of 2, 3, 4 = 12

$1/2 = 6/12, 1/3 = 4/12, 1/4 = 3/12$

Sum = $(6 + 4 + 3)/12 = 13/12$

(iv) $1/3 + 1/5 + 4/15$

LCM of 3, 5, 15 = 15

1/3 = 5/15, 1/5 = 3/15, 4/15 = 4/15
Sum = $(5 + 3 + 4)/15 = 12/15 = \textcolor{red}{4/5}$

(v) $1/3 + 2/5 + 3/10$
LCM of 3, 5, 10 = 30
 $1/3 = 10/30, 2/5 = 12/30, 3/10 = 9/30$
Sum = $(10 + 12 + 9)/30 = \textcolor{red}{31/30}$

(vi) $1/4 + 5/6 + 3/8$
LCM of 4, 6, 8 = 24
 $1/4 = 6/24, 5/6 = 20/24, 3/8 = 9/24$
Sum = $(6 + 20 + 9)/24 = \textcolor{red}{35/24}$

Answers:

(i) 8/11 (ii) 4/5 (iii) 13/12 (iv) 4/5 (v) 31/30 (vi) 35/24 ✓

9. Simplify:

(i) $1/2 + 1/3 - 1/5$
LCM of 2, 3, 5 = 30
 $1/2 = 15/30, 1/3 = 10/30, 1/5 = 6/30$
So total = $(15 + 10 - 6)/30 = \textcolor{red}{19/30}$

(ii) $2/3 + 4/5 - 7/15$
LCM of 3, 5, 15 = 15
 $2/3 = 10/15, 4/5 = 12/15, 7/15 = 7/15$
Total = $(10 + 12 - 7)/15 = 15/15 = \textcolor{red}{1}$

(iii) $2/3 + 3/4 - 3/8$
LCM of 3, 4, 8 = 24
 $2/3 = 16/24, 3/4 = 18/24, 3/8 = 9/24$
Total = $(16 + 18 - 9)/24 = \textcolor{red}{25/24}$

(iv) $6/7 - 1/2 - 1/3$
LCM of 7, 2, 3 = 42
 $6/7 = 36/42, 1/2 = 21/42, 1/3 = 14/42$
Total = $(36 - 21 - 14)/42 = \textcolor{red}{1/42}$

Answers:

(i) 19/30 (ii) 1 (iii) 25/24 (iv) 1/42 ✓

10. Convert the following fractions into decimals:

(i) 2/10
Divide 2 by 10: $2 \div 10 = \textcolor{red}{0.2}$

(ii) $9/10$
 $9 \div 10 = 0.9$

(iii) $1/5$
Make denominator 10: $1/5 = 2/10 = 0.2$

(iv) $1/2$
 $1 \div 2 = 0.5$

(v) $27/100$
 $27 \div 100 = 0.27$

(vi) $21/1000$
 $21 \div 1000 = 0.021$

Answers:

(i) 0.2 (ii) 0.9 (iii) 0.2 (iv) 0.5 (v) 0.27 (vi) 0.021 ✓

The remaining of the chapter will be added soon