T e R S R e

e die e B e e B e B e B B B B B B B B B B e B e B e B B B B B B B B e

CLASS -10 (2025-26)

INPUT IN JAVA
CHAPTER 5

Assignments:-

1. Identify and explain the problem with the following code fragment:
int cts;
char answer;
cts = 10;
answer cts; // Error

Problem:

answer cts; IS invalid syntax. It looks like an assignment is attempted, but the assignment
operator = is missing.
Correct version:

answer = (char) cts; // if type conversion is intended

2. In an expression, what type are byte and short promoted to?
Answer:
In expressions, byte and short are promoted to int before the operation is performed.

3. Are the following statements legal? Why or why not?

short sl = 10;
short s2 = 10;
short result = sl + s2; // Illegal

Answer:
lllegal. s1 + s2 is promoted to int, and assigning it directly to a short causes a type mismatch.
Fix:

short result = (short) (sl + s2);

4. What is arithmetic promotion? What is coercion?
e Arithmetic Promotion: Automatic conversion of smaller data types (byte, short, char) to
int (or larger types like f1o0at, double) in arithmetic operations.
« Coercion: Implicit or explicit conversion of one data type to another (e.g., int t0 double).

5. What types can you assign a short to without explicit casting?

Answer:
You can assign a short to:
e int
e long
° float
e double

These are widening conversions and do not require casting.

6. What is casting and how do you do it?

Answer:

Casting is explicitly converting a value from one type to another.
Syntax:

int i = (int) 3.14; // Cast double to int

When needed:
e When converting from a larger to smaller type (double t0 int, int t0 byte)

e e e B B B B B e B B B B B B B e B B B B B B B B B e B

T e R S R e

e die e B e e B e B e B B B B B B B B B B e B e B e B B B B B B B B e

e When assigning between incompatible types

7. Why would you want to use an object wrapper rather than a primitive type?
Answer:
e Wrapper classes allow primitives to be used in collections (like ArrayList<Integer>)
e They provide utility methods
o Needed for nullability, generics, and object manipulation

8. What are wrapper classes? How iS 1nteger different from int?
Answer:

o Wrapper classes wrap primitive types into objects (1nteger, Double, etc.)
e int iSaprimitive; integer is an object class with extra features.

9. What are Wrapper classes? Give any two examples.
Answer:
Wrapper classes wrap primitive data types into objects.
Examples:

o Integerforint

e Double for double

10. What is autoboxing?

Answer:

Autoboxing is the automatic conversion of a primitive to its corresponding wrapper class.
Example:

int x = 5;
Integer obj = x; // Autoboxing

11. What is unboxing?

Answer:

Unboxing is the automatic conversion of a wrapper class object to its corresponding primitive type.
Example:

Integer obj = 5;
int x = obj; // Unboxing

12. When to prefer primitive types vs wrapper classes?
Answer:
o Prefer primitives: When performance and memory efficiency matter.
o Use wrappers: When you need to work with collections, generics, or null values.

13. Program: Converter.java (Kilometers to Feet and Light Years)

Answer:
public class Converter {
public static void main(String[] args) {
System.out.println ("This program converts kilometers into feet and light
years.");

double kilometers = Double.parseDouble (args[0]);

double feet = kilometers * 3280.839895013;
double lightYears = kilometers / 9460730472580.8;

System.out.println ("The number of kilometers: " + kilometers);

hhbhbbrbbbb b bbb b bbbbbbbbbbbhbhbrhhs

e die e B B e B e B e B B B B B B B B e B e B B B B B B B B B B e e e B

System.out.println("This is equal to " + feet + " feet and " + lightYears
+ " light years.");
}
}

Sample run:
If you enter 145 as a command-line argument, the output will be:

This program converts kilometers into feet and light years.
The number of kilometers: 145.0
This is equal to 475721.784776885 feet and 1.5326512093356922E-11 light years.

14. Output of the Given Code
Answer:

int number;
number = 10; //1
System.out.println("1= "+ number) ; // Output: 1= 10

number = 10+6; //2

System.out.println ("2="+ number) ; // Output: 2=16
number = 10+6*7; //3 => 10 + (6*7) = 10 + 42 = 52
System.out.println ("3="+ number) ; // Output: 3=52

number 10 + 6 * 7 / 2; //4 => 6*7=42, then 42/2=21, then 10+21=31
System.out.println ("4 = "+number) ; // Output: 4 = 31

number = 10 + 7 / 2 * 6 - 2; //5
// /2 3 (int division), 3*6 = 18, 10+18=28, 28-2=26
System.out.println ("5"+ number) ; // Output: 526

15.Pr0gran1:change.java
Answer:

import Jjava.util.Scanner;

public class Change {
public static void main(String[] args) {

Scanner sc = new Scanner (System.in);
System.out.print ("Enter an amount between Rs 100 and Rs 1000: ");
int amount = sc.nextInt();

int[] denominations = {50, 20, 10, 5, 2, 1};

System.out.println ("Minimum number of notes/coins:");
for (int note : denominations) {
int count = amount / note;

amount %= note;
if (count > 0)
System.out.println(note + " x " + count);

16. Output of Given Code
Answer:

()

byte x = 64, vy;

y = (byte) (x << 2); // 64 << 2 = 256 => overflow => (byte)256 = 0
System.out.println(y); // Output: 0

(b) (Binary Logic Operations)

Let’s convert them:

hhbhbbrbbbbrbbbbbbbbbbbbbbbbhhbshhs

T e R S R e

T e R S R e

e e e B B B B B e B B B B B B B e B B B B B B B e B B B B B B e B B

e 00110011 =0x33=51

e 11110000 = 0xFO =240
(1) 00110011 & 11110000 =00110000 =48
(i) 00110011 ~ 11110000 =11000011 =195
(ifi) 00110011 | 11110000 =11110011 =243

17. Output Prediction
Answer:

(i)

byte b;

double d = 417.35;

b = (byte) d;

System.out.println(b); // Output: 417 % 256 = 161 (because byte range is -128 to
127), so Output: **-95**

(i)

int x = 10;

int y = 20;

if ((x <vy) Il (x=25) >10)

System.out.println(x); // x < y 1s true, so second condition not evaluated
due to short-circuit
else

System.out.println(y);

Output: 10

18. Understanding the Output
Answer:

int 1 = 5;
System.out.println(++1i); // Pre-increment: i1 becomes 6, prints 6
System.out.println(i++); // Post-increment: prints 6, then i becomes 7

Output:

6
6

Explanation:
e First ++i: increments before use — i = 6, prints 6
e Then i++: uses value before increment — prints 6, then i becomes 7

e e e B B e B B e B B B B e B B B B B B e B B B B B B e B B B

