
CLASS -10 (2025-26)

INPUT IN JAVA
CHAPTER 5

Assignments:-
1. Identify and explain the problem with the following code fragment:

int cts;

char answer;

cts = 10;

answer cts; // Error

Problem:

answer cts; is invalid syntax. It looks like an assignment is attempted, but the assignment

operator = is missing.

Correct version:

answer = (char) cts; // if type conversion is intended

2. In an expression, what type are byte and short promoted to?
Answer:

In expressions, byte and short are promoted to int before the operation is performed.

3. Are the following statements legal? Why or why not?

short s1 = 10;

short s2 = 10;

short result = s1 + s2; // Illegal

Answer:

Illegal. s1 + s2 is promoted to int, and assigning it directly to a short causes a type mismatch.

Fix:

short result = (short)(s1 + s2);

4. What is arithmetic promotion? What is coercion?

 Arithmetic Promotion: Automatic conversion of smaller data types (byte, short, char) to

int (or larger types like float, double) in arithmetic operations.

 Coercion: Implicit or explicit conversion of one data type to another (e.g., int to double).

5. What types can you assign a short to without explicit casting?
Answer:

You can assign a short to:
 int
 long
 float
 double

These are widening conversions and do not require casting.

6. What is casting and how do you do it?
Answer:
Casting is explicitly converting a value from one type to another.

Syntax:
int i = (int) 3.14; // Cast double to int

When needed:

 When converting from a larger to smaller type (double to int, int to byte)

 When assigning between incompatible types

7. Why would you want to use an object wrapper rather than a primitive type?
Answer:

 Wrapper classes allow primitives to be used in collections (like ArrayList<Integer>)

 They provide utility methods

 Needed for nullability, generics, and object manipulation

8. What are wrapper classes? How is Integer different from int?
Answer:

 Wrapper classes wrap primitive types into objects (Integer, Double, etc.)

 int is a primitive; Integer is an object class with extra features.

9. What are Wrapper classes? Give any two examples.
Answer:
Wrapper classes wrap primitive data types into objects.

Examples:

 Integer for int

 Double for double

10. What is autoboxing?
Answer:
Autoboxing is the automatic conversion of a primitive to its corresponding wrapper class.

Example:

int x = 5;

Integer obj = x; // Autoboxing

11. What is unboxing?
Answer:
Unboxing is the automatic conversion of a wrapper class object to its corresponding primitive type.

Example:

Integer obj = 5;

int x = obj; // Unboxing

12. When to prefer primitive types vs wrapper classes?
Answer:

 Prefer primitives: When performance and memory efficiency matter.

 Use wrappers: When you need to work with collections, generics, or null values.

13. Program: Converter.java (Kilometers to Feet and Light Years)
 Answer:
public class Converter {

 public static void main(String[] args) {

 System.out.println("This program converts kilometers into feet and light

years.");

 double kilometers = Double.parseDouble(args[0]);

 double feet = kilometers * 3280.839895013;

 double lightYears = kilometers / 9460730472580.8;

 System.out.println("The number of kilometers: " + kilometers);

 System.out.println("This is equal to " + feet + " feet and " + lightYears

+ " light years.");

 }

}

Sample run:

If you enter 145 as a command-line argument, the output will be:

This program converts kilometers into feet and light years.

The number of kilometers: 145.0

This is equal to 475721.784776885 feet and 1.5326512093356922E-11 light years.

14. Output of the Given Code
Answer:

int number;

number = 10; //1

System.out.println("1= "+ number); // Output: 1= 10

number = 10+6; //2

System.out.println("2="+ number); // Output: 2=16

number = 10+6*7; //3 => 10 + (6*7) = 10 + 42 = 52

System.out.println("3="+ number); // Output: 3=52

number = 10 + 6 * 7 / 2; //4 => 6*7=42, then 42/2=21, then 10+21=31

System.out.println("4 = "+number); // Output: 4 = 31

number = 10 + 7 / 2 * 6 - 2; //5

// 7/2 = 3 (int division), 3*6 = 18, 10+18=28, 28-2=26

System.out.println("5"+ number); // Output: 526

15. Program: Change.java
Answer:

import java.util.Scanner;

public class Change {

 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);

 System.out.print("Enter an amount between Rs 100 and Rs 1000: ");

 int amount = sc.nextInt();

 int[] denominations = {50, 20, 10, 5, 2, 1};

 System.out.println("Minimum number of notes/coins:");

 for (int note : denominations) {

 int count = amount / note;

 amount %= note;

 if (count > 0)

 System.out.println(note + " x " + count);

 }

 }

}

16. Output of Given Code
Answer:
 (a)

byte x = 64, y;

y = (byte) (x << 2); // 64 << 2 = 256 => overflow => (byte)256 = 0

System.out.println(y); // Output: 0

(b) (Binary Logic Operations)

Let’s convert them:

 00110011 = 0x33 = 51

 11110000 = 0xF0 = 240

(i) 00110011 & 11110000 = 00110000 = 48

(ii) 00110011 ^ 11110000 = 11000011 = 195

(iii) 00110011 | 11110000 = 11110011 = 243

17. Output Prediction
Answer:
 (i)

byte b;
double d = 417.35;

b = (byte) d;

System.out.println(b); // Output: 417 % 256 = 161 (because byte range is -128 to

127), so Output: **-95**

(ii)

int x = 10;

int y = 20;

if ((x < y) || (x = 5) > 10)

 System.out.println(x); // x < y is true, so second condition not evaluated

due to short-circuit

else

 System.out.println(y);

Output: 10

18. Understanding the Output
Answer:

int i = 5;

System.out.println(++i); // Pre-increment: i becomes 6, prints 6

System.out.println(i++); // Post-increment: prints 6, then i becomes 7

Output:

6

6

Explanation:

 First ++i: increments before use → i = 6, prints 6

 Then i++: uses value before increment → prints 6, then i becomes 7

