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CLASS -12 (2025-26)

OBJECTS AND CLASSES

Assignments:-

1. Definitions:

(i) Class: A class in Java is a blueprint or template for creating objects. It defines properties (variables)
and behaviors (methods) that the objects created from it will have.

(if) Object: An object is an instance of a class. It represents a real-world entity and contains both data
(attributes) and methods (functions) defined by its class.

2. Difference between Object and Class:

Class Object
Blueprint or template Instance of a class
Defines structure and behavior | Holds actual data and can perform actions
No memory is allocated Memory is allocated when created using new keyword

3. Abstraction and Encapsulation:

o Abstraction is the process of hiding complex internal implementation details and showing only
essential features to the user.

o Encapsulation is the technique of bundling the data (variables) and methods that operate on the
data into a single unit, i.e., class, and restricting direct access to some of the object's
components.

Interrelation: Encapsulation helps achieve abstraction by hiding the internal data using access
modifiers and exposing only necessary information via public methods.

Example of Abstraction:
abstract class Shape {
abstract void draw();

}

class Circle extends Shape {
void draw() {
System.out.printin("Drawing Circle™);

}
}

4. Key features of objects:
» State: Represented by attributes or fields.
o Behavior: Represented by methods.
o ldentity: Each object has a unique identity (memory location).
« Encapsulation: Combines data and behavior.
e Reusability: Can be reused through inheritance.
5. Constructor and its Role:
e A constructor is a special method that is automatically called when an object is created.
o Its role is to initialize the object’s data members.

6. Two basic types of constructors in Java:
o Default constructor (no parameters)
o Parameterized constructor (with parameters)

7. Difference between class members and instance members:
Class Members Instance Members
Declared with static keyword | No static keyword
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Belong to the class

Belong to the instance (object)

Accessed using class name

Accessed using object reference
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8. Keyword to create a class member:
o  **static**

9. Can static methods access instance members?
« No, static methods cannot directly access instance members because they do not belong to any
object.

10. Keyword to protect a class from outside the package (by default):
e (d) Don’t use any keyword at all
(default access modifier restricts access to within the same package)

11. Keyword to make a member visible in all subclasses across packages:

e (cC) public
12. The use of protected keyword to a member in a class will restrict its visibility as follows:
(c) visible in all classes in the same package and subclasses in other packages

13. Keywords used to control access to a class member:
(a) default, (c) protected, (e) public

14,
o Private members: Accessible only within the class itself.
o Public members: Accessible from any other class.

15.

o Protected members: Accessible within the same package and by subclasses in other packages.

o Public members: Accessible from anywhere.
o Private members: Accessible only within the class.

16. A class enforces information hiding using access modifiers like private to restrict access to its
internal data and expose only what’s necessary using pub1ic methods.

17.
e *rxstaticx* keyword makes a member belong to the class rather than to any object.
o With static: Shared across all instances.
o Without static: Separate copy for each object.
Example:
class Demo {
static int count = 0;
intid;
Demo(int id) {
this.id = id;
count++;
}
}
18.

class Student {
private int rollno;
private char grade;

1 444444444494444444494444444444444444

KKy

e at s A a S A A At At A At st s At a8 aS s A At aS s A st ot st At st 2t s at st a3 st at a2t st at a a8 st at a a3 St




L 44444444494444494444944444444444444441474

LG GGG GGG GLLGOGLLGLLGLLGLLLGLL Gt

public Student(int r, char g) {
rollno =r;
grade = g;

}

public void init() { } // just declaration
public void display() { } / just declaration

k
19.

class Sample {
inti;
char c;
float f;

public Sample(int i, char c, float f) {
this.i = i;
this.c = ¢;
this.f = f;
}
}

20.
Constructor functions obey access rules means their visibility depends on access modifiers like
public, private, etc., just like other methods or fields.

21.
o Parameterized constructor: Takes arguments to initialize members.
o Non-parameterized constructor: Takes no arguments and often assigns default values.

22.
An object maintains its state using instance variables. Each object has its own copy of these
variables.

23.
Constructor vs Method:

Constructor Method
Same name as class Can have any name
No return type Has return type

Automatically called during object creation Called manually on an object

24,
If a method or field is static, it belongs to the class, not to any instance. Shared by all objects.

25,

class Point {
double x, y;

Point(double x, double y) {
this.x = X;
this.y = ;
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26.

27.

28.

29.
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double distance(Point p) {
return Math.sgrt(Math.pow(X - p.Xx, 2) + Math.pow(y - p.y, 2));
}
}

Animal Lion = new Animal(240, 3.6);

Lion.weight = 250;
Lion.length = 3.8;

class BankAccount {
private String name;
private String type;
private double balance;

BankAccount(String name, String type, double balance) {
this.name = name;
this.type = type;
this.balance = balance;

¥

void deposit(double amount) {
balance += amount;

by

void withdraw(double amount) {
if (balance >= amount) balance -= amount;
else System.out.printin("Insufficient Balance™);

}
void display() {

System.out.printIn(*"Name: " + name + ", Balance: " + balance);

¥
¥

class Simple {
int x = 10;
static inty = 5;

public static void main(String[] args) {
Simple obj = new Simple();
int input = Integer.parselnt(args[0]);
int result = (obj.x * input) / y;
System.out.printIn("Result: " + result);

¥
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30.
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class DistanceConverter {

¥

public static void main(String[] args) {
double feet = Double.parseDouble(args[0]);
double inches = feet * 12;
System.out.printin(feet + " feet =" + inches + " inches");

¥

28. Design a class to represent a bank account:

class BankAccount {

¥

29. Program using command-line argument, instance and class variables:

private String depositorName;
private String accountType;
private double balance;

/I Constructor to initialize values

public BankAccount(String name, String type, double amount) {
depositorName = name;
accountType = type;
balance = amount;

¥

/I Method to deposit an amount
public void deposit(double amount) {
balance += amount;

by

/I Method to withdraw an amount after checking balance
public void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;
}else {
System.out.printIn("Insufficient balance.");
}
}

/I Method to display name and balance

public void display() {
System.out.printin(*Name: " + depositorName);
System.out.printin("Balance: " + balance);

¥

class Simple {

int x = 10; /l instance variable
static inty = 2; /[ class variable
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public static void main(String[] args) {
if (args.length > 0) {
int input = Integer.parselnt(args[0]);
Simple obj = new Simple();
int result = (obj.x * input) / y;
System.out.printIn("Result: " + result);
} else {
System.out.printin("Please enter a number as command line argument.");
}
}
}

30. Program to convert feet to inches using command-line arguments:

class DistanceConverter {
public static void main(String[] args) {
if (args.length > 0) {
double feet = Double.parseDouble(args[0]);
double inches = feet * 12;
System.out.printin(feet + " feet =" + inches + " inches");
}else {
System.out.printIn("Please enter distance in feet as command line argument.");
}
}
}
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