
CLASS -12 (2025-26)

OBJECTS AND CLASSES
CHAPTER 3

Assignments:-
1. Definitions:
(i) Class: A class in Java is a blueprint or template for creating objects. It defines properties (variables)

and behaviors (methods) that the objects created from it will have.

(ii) Object: An object is an instance of a class. It represents a real-world entity and contains both data

(attributes) and methods (functions) defined by its class.

2. Difference between Object and Class:

Class Object

Blueprint or template Instance of a class

Defines structure and behavior Holds actual data and can perform actions

No memory is allocated Memory is allocated when created using new keyword

3. Abstraction and Encapsulation:

 Abstraction is the process of hiding complex internal implementation details and showing only

essential features to the user.

 Encapsulation is the technique of bundling the data (variables) and methods that operate on the

data into a single unit, i.e., class, and restricting direct access to some of the object's

components.

Interrelation: Encapsulation helps achieve abstraction by hiding the internal data using access

modifiers and exposing only necessary information via public methods.

Example of Abstraction:
abstract class Shape {

 abstract void draw();

}

class Circle extends Shape {

 void draw() {

 System.out.println("Drawing Circle");

 }

}

4. Key features of objects:

 State: Represented by attributes or fields.

 Behavior: Represented by methods.

 Identity: Each object has a unique identity (memory location).

 Encapsulation: Combines data and behavior.

 Reusability: Can be reused through inheritance.

5. Constructor and its Role:

 A constructor is a special method that is automatically called when an object is created.

 Its role is to initialize the object’s data members.

6. Two basic types of constructors in Java:

 Default constructor (no parameters)

 Parameterized constructor (with parameters)

7. Difference between class members and instance members:

Class Members Instance Members

Declared with static keyword No static keyword

Belong to the class Belong to the instance (object)

Accessed using class name Accessed using object reference

8. Keyword to create a class member:

 **static**

9. Can static methods access instance members?

 No, static methods cannot directly access instance members because they do not belong to any

object.

10. Keyword to protect a class from outside the package (by default):

 (d) Don’t use any keyword at all
(default access modifier restricts access to within the same package)

11. Keyword to make a member visible in all subclasses across packages:

 (c) public

12. The use of protected keyword to a member in a class will restrict its visibility as follows:

(c) visible in all classes in the same package and subclasses in other packages

13. Keywords used to control access to a class member:

(a) default, (c) protected, (e) public

14.

 Private members: Accessible only within the class itself.

 Public members: Accessible from any other class.

15.

 Protected members: Accessible within the same package and by subclasses in other packages.

 Public members: Accessible from anywhere.

 Private members: Accessible only within the class.

16. A class enforces information hiding using access modifiers like private to restrict access to its

internal data and expose only what’s necessary using public methods.

17.

 **static** keyword makes a member belong to the class rather than to any object.

 With static: Shared across all instances.

 Without static: Separate copy for each object.

Example:

class Demo {

 static int count = 0;

 int id;

 Demo(int id) {

 this.id = id;

 count++;

 }

}

18.

class Student {

 private int rollno;

 private char grade;

 public Student(int r, char g) {

 rollno = r;

 grade = g;

 }

 public void init() { } // just declaration

 public void display() { } // just declaration

}

19.

class Sample {

 int i;

 char c;

 float f;

 public Sample(int i, char c, float f) {

 this.i = i;

 this.c = c;

 this.f = f;

 }

}

20.
Constructor functions obey access rules means their visibility depends on access modifiers like

public, private, etc., just like other methods or fields.

21.

 Parameterized constructor: Takes arguments to initialize members.

 Non-parameterized constructor: Takes no arguments and often assigns default values.

22.
An object maintains its state using instance variables. Each object has its own copy of these

variables.

23.

Constructor vs Method:

Constructor Method

Same name as class Can have any name

No return type Has return type

Automatically called during object creation Called manually on an object

24.
If a method or field is static, it belongs to the class, not to any instance. Shared by all objects.

25.

class Point {

 double x, y;

 Point(double x, double y) {

 this.x = x;

 this.y = y;

 }

 double distance(Point p) {

 return Math.sqrt(Math.pow(x - p.x, 2) + Math.pow(y - p.y, 2));

 }

}

26.

Animal Lion = new Animal(240, 3.6);

27.

Lion.weight = 250;

Lion.length = 3.8;

28.

class BankAccount {

 private String name;

 private String type;

 private double balance;

 BankAccount(String name, String type, double balance) {

 this.name = name;

 this.type = type;

 this.balance = balance;

 }

 void deposit(double amount) {

 balance += amount;

 }

 void withdraw(double amount) {

 if (balance >= amount) balance -= amount;

 else System.out.println("Insufficient Balance");

 }

 void display() {

 System.out.println("Name: " + name + ", Balance: " + balance);

 }

}

29.

class Simple {

 int x = 10;

 static int y = 5;

 public static void main(String[] args) {

 Simple obj = new Simple();

 int input = Integer.parseInt(args[0]);

 int result = (obj.x * input) / y;

 System.out.println("Result: " + result);

 }

}

30.

class DistanceConverter {

 public static void main(String[] args) {

 double feet = Double.parseDouble(args[0]);

 double inches = feet * 12;

 System.out.println(feet + " feet = " + inches + " inches");

 }

}

28. Design a class to represent a bank account:

class BankAccount {

 private String depositorName;

 private String accountType;

 private double balance;

 // Constructor to initialize values

 public BankAccount(String name, String type, double amount) {

 depositorName = name;

 accountType = type;

 balance = amount;

 }

 // Method to deposit an amount

 public void deposit(double amount) {

 balance += amount;

 }

 // Method to withdraw an amount after checking balance

 public void withdraw(double amount) {

 if (balance >= amount) {

 balance -= amount;

 } else {

 System.out.println("Insufficient balance.");

 }

 }

 // Method to display name and balance

 public void display() {

 System.out.println("Name: " + depositorName);

 System.out.println("Balance: " + balance);

 }

}

29. Program using command-line argument, instance and class variables:

class Simple {

 int x = 10; // instance variable

 static int y = 2; // class variable

 public static void main(String[] args) {

 if (args.length > 0) {

 int input = Integer.parseInt(args[0]);

 Simple obj = new Simple();

 int result = (obj.x * input) / y;

 System.out.println("Result: " + result);

 } else {

 System.out.println("Please enter a number as command line argument.");

 }

 }

}

30. Program to convert feet to inches using command-line arguments:

class DistanceConverter {

 public static void main(String[] args) {

 if (args.length > 0) {

 double feet = Double.parseDouble(args[0]);

 double inches = feet * 12;

 System.out.println(feet + " feet = " + inches + " inches");

 } else {

 System.out.println("Please enter distance in feet as command line argument.");

 }

 }

}
