

CLASS -12 (2025-26)
BOOLEAN ALGEBRA
CHAPTER 1

Assignments:-

1. What is a proposition?

Ans:- A **proposition** is a declarative sentence that is either **true** or **false**, but **not both**.
Example: "The sky is blue."

2. What do you mean by contingency, tautology, and contradiction?

Ans:-

- **Tautology:** A compound proposition that is **always true**, regardless of the truth values of its components.
- **Contradiction:** A compound proposition that is **always false**.
- **Contingency:** A compound proposition that is **sometimes true and sometimes false**, depending on the values of its variables.

3. What is a connective?

Ans:- A **connective** is a logical operator that connects two or more propositions to form a compound proposition. Examples include **AND** (\cdot), **OR** ($+$), **NOT** (\sim), **IMPLIES** (\Rightarrow), and **BICONDITIONAL** (\Leftrightarrow).

4. Name the process for the compounds given below:

Ans:-

- (i) $p + q \rightarrow$ **Disjunction (OR)**
- (ii) $p \cdot q \rightarrow$ **Conjunction (AND)**
- (iii) $p \Rightarrow q \rightarrow$ **Implication (Conditional)**
- (iv) $\sim p \rightarrow$ **Negation**
- (v) $p \Leftrightarrow q \rightarrow$ **Biconditional (Equivalence)**

5. What are contingencies?

Ans:- **Contingencies** are compound propositions that are **neither tautologies nor contradictions**, i.e., their truth value depends on the truth values of the component propositions.

6. Converse, Inverse, and Contrapositive of $p \Rightarrow q$

Ans:-

- **Converse:** $q \Rightarrow p$
- **Inverse:** $\sim p \Rightarrow \sim q$
- **Contrapositive:** $\sim q \Rightarrow \sim p$

7. What is syllogism?

Ans:-

Syllogism is a logical argument that applies deductive reasoning to arrive at a conclusion based on two or more premises.

Example:

- Premise 1: All humans are mortal.
- Premise 2: Socrates is a human.
- Conclusion: Socrates is mortal.

8. What do you mean by Gray code? How is it different from ordinary binary code?

Ans:- **Gray Code** is a binary numbering system in which **two successive values differ in only one bit**.

Difference: In **ordinary binary**, multiple bits can change between numbers, but in

Gray Code, only **one bit** changes at a time—reducing the chance of errors in digital circuits (especially in position encoders).

9. Given:

- p = It is raining
- q = It is not a sunny day

Construct compound sentences:

Ans:-

- (i) q' : It **is** a sunny day
- (ii) $p \cdot q$: It is raining **and** it is not a sunny day
- (iii) $p + q$: It is raining **or** it is not a sunny day
- (iv) $p \Rightarrow q$: If it is raining, then it is not a sunny day
- (v) $p \Leftrightarrow q$: It is raining **if and only if** it is not a sunny day
- (vi) $p' + q'$: It is **not** raining **or** it is a sunny day
- (vii) $p' \cdot q'$: It is **not** raining **and** it is a sunny day
- (viii) $\sim p \Rightarrow q$: If it is **not** raining, then it is not a sunny day
- (ix) $\sim p \Leftrightarrow \sim q$: It is **not** raining **if and only if** it is a sunny day
- (x) $(p + q) \Rightarrow (p \cdot q)$: If it is raining **or** it is not a sunny day, then it is raining **and** it is not a sunny day

10(a)

Let:

- x = "I like coffee"
- y = "I like tea"

Now write the statements in **symbolic form**:

(i) *I like coffee and tea*

$\rightarrow x \wedge y$

(ii) *I like coffee but not tea*

$\rightarrow x \wedge \neg y$

(iii) *It is false that I don't like coffee or tea*

$\rightarrow \neg(\neg x \vee \neg y)$

(This is logically equivalent to $x \wedge y$ — De Morgan's Law)

(iv) *Neither I like coffee nor tea*

$\rightarrow \neg x \wedge \neg y$

(v) *Either I like coffee or I do not like coffee but like tea*

$\rightarrow x \vee (\neg x \wedge y)$

10(b)

Expression: $\sim x \wedge y$

Meaning: *I do not like coffee and I like tea*

11.

Given:

- s : "I will not go to school"
- t : "I will watch a movie"

Expression: $\neg s \vee t$

Since s = "**I will not go to school**", then

$\neg s$ = "I will go to school"

So, the expression means:

"I will go to school or I will watch a movie."

12. Truth Table Verifications

(Already done earlier — summary):

- (i) $\sim(a \Rightarrow b) \neq \sim a \wedge \sim b \rightarrow \text{Not equivalent}$
- (ii) $(a \Rightarrow b) \neq (\sim a \Rightarrow \sim b) \rightarrow \text{Not equivalent}$
- (iii) $(a \Rightarrow b) \wedge (b \Rightarrow a) = a \Leftrightarrow b \rightarrow \text{Equivalent}$
- (iv) $(\sim a \vee b) \wedge (\sim b \vee a) = a \Leftrightarrow b \rightarrow \text{Equivalent}$
- (v) $(p \Rightarrow r) \wedge (q \Rightarrow r) \neq (p \vee q) \Rightarrow r \rightarrow \text{Not equivalent}$

13. Evaluate for x, y combinations:

Case $x \ y \ y \wedge x \ y \vee x \ \sim x \vee y \ x \wedge \sim y \ (\sim x \wedge \sim y) \vee \sim y$

(i)	0	1	0	1	1
(ii)	1	1	1	0	1
(iii)	1	0	0	1	0

14. Converse, Inverse, Contrapositive

(i) $x \Rightarrow y$

- x: It is raining
- y: I am enjoying it
- Converse: $y \Rightarrow x \rightarrow$ If I am enjoying it, then it is raining
- Inverse: $\sim x \Rightarrow \sim y \rightarrow$ If it is not raining, then I am not enjoying it
- Contrapositive: $\sim y \Rightarrow \sim x \rightarrow$ If I am not enjoying it, then it is not raining

(ii) $p \Rightarrow q$

- p: $2 + 3 \neq 6$
- q: $a > 0$
- Converse: $q \Rightarrow p$
- Inverse: $\sim p \Rightarrow \sim q$
- Contrapositive: $\sim q \Rightarrow \sim p$

15. Tautology or Contradiction?

Expression	Result
------------	--------

(a) $p \wedge q \wedge (p \vee q)'$	→ Contradiction
(b) $(p \Rightarrow q) \wedge p$	→ Contingency
(c) $(p \wedge q) \Rightarrow (\sim p \wedge \sim q)$	→ Contradiction
(d) $[(p \Rightarrow q) \Leftrightarrow (q \Rightarrow (\sim p \wedge \sim q))]$	→ Contradiction
(e) $(p \vee q) \wedge (\sim p \wedge \sim q)$	→ Contradiction
(f) $[(p \Rightarrow q) \wedge (q \Rightarrow r)]$	→ Contingency

16. Truth Table (Given: p: 2+3=5 (True), q: 2×3=6 (True))

Expression	Result
------------	--------

(i) If $2+3=5$ then $2 \times 3=6 \rightarrow T \Rightarrow T$	True
(ii) If $2+3 \neq 5$ then $2 \times 3=6 \rightarrow F \Rightarrow T$	True
(iii) If $2+3=5$ then $2 \times 3 \neq 6 \rightarrow T \Rightarrow F$	False
(iv) If $2+3 \neq 5$ then $2 \times 3 \neq 6 \rightarrow F \Rightarrow F$	True

17. Establish validity:

Given:

- $p \Rightarrow q$

- $p \Rightarrow r$

To prove: $\neg r \Rightarrow q$

Counterexample possible \rightarrow Not valid in all cases, hence not a tautology

18. Show:

Given:

- $a \vee b$
- $\neg a \Rightarrow b$

To prove: b

This is valid, because:

- If a is true, then $a \vee b$ gives b or a true $\rightarrow b$ must hold for consistency with $\neg a \Rightarrow b$

Conclusion: Valid argument

19. Given:

- $a \Rightarrow b$
- $b \Rightarrow c$

To prove: $a \Rightarrow c$

This is transitivity of implication, and is valid

20. Given:

- $x \Leftrightarrow \neg y$
- $x \Rightarrow z$

To prove: z

From $x \Leftrightarrow \neg y$, we know $x = \neg y$,

So if x is true, then z is true (from $x \Rightarrow z$)

But x could be false, and z unknown — So, not always valid

17. Show that:

Given:

- $p \Rightarrow q \rightarrow \neg p \vee q$
- $p \Rightarrow r \rightarrow \neg p \vee r$

To prove: $\neg r \Rightarrow q \rightarrow \neg r \vee q$

p	q	r	$\neg p \vee q$	$\neg p \vee r$	$\neg r \vee q$
0	0	0	1	1	1
0	0	1	1	1	0
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	0	1
1	1	1	1	1	1

Conclusion: $\neg r \Rightarrow q$ is not valid in all cases, hence not a tautology.

18. Show that:

Given:

- $a \vee b$
- $\neg a \Rightarrow b \rightarrow \neg a \vee b$

To prove: b

a	b	$a \vee b$	$\neg a \vee b$	b
0	0	0	1	0
0	1	1	1	1

1	0	1	0	0
1	1	1	1	1

Conclusion: The argument holds only if both premises are **true**, which happens in only some cases. So, b is not always valid. **Contingency**.

19. Show that:

Given:

- $a \Rightarrow b \rightarrow \neg a \vee b$
- $b \Rightarrow c \rightarrow \neg b \vee c$

To prove: $a \Rightarrow c \rightarrow \neg a \vee c$

a	b	c	$\neg a \vee b$	$\neg b \vee c$	$\neg a \vee c$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Conclusion: $a \Rightarrow c$ is not always true even if $a \Rightarrow b$ and $b \Rightarrow c$ are true. **Contingent**.

20. Show that:

Given:

- $x \Leftrightarrow \neg y$
- $x \Rightarrow z$

To prove: z

x	y	z	$x \Leftrightarrow \neg y$	$x \Rightarrow z$	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1

Conclusion: z is **not always guaranteed**, even with both premises. Hence, **not a valid argument**.

21. Draw the conclusions from the following premises.

- **P1:** John is a father.
- **P2:** If John is a father then John has a child.

Answer:

By *Modus Ponens*: If $P \Rightarrow Q$, and P is true, then Q is true.

Since John is a father and "If John is a father then he has a child",

Conclusion: John has a child.

22. Given the following premises:

- **P1:** (Programmer likes C++) \Rightarrow (Programmer hates COBOL)
- **P2:** (Programmer hates COBOL) \Rightarrow (Programmer likes OOPS)

Answer:

By *Chain Rule*: If $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$.

Conclusion: If a programmer likes C++, then the programmer likes OOPS.

23. Determine the nature of the following sentences:

- **S1:** $(p \ \& \ q) \vee \sim(p \ \& \ q) \rightarrow$ **Valid** (Law of excluded middle)
- **S2:** $(p \vee q) \rightarrow (p \ \& \ q) \rightarrow$ **Contradictory**
- **S3:** $(p \ \& \ q) \rightarrow (r \vee \sim q) \rightarrow$ **Contingent**
- **S4:** $(p \vee q) \& (p \vee \sim q) \vee p \rightarrow$ **Valid**
- **S5:** $p \rightarrow q \rightarrow \sim p \rightarrow$ **Contingent**
- **S6:** $p \vee q \ \& \ \sim p \vee \sim q \ \& \ p \rightarrow$ **Contradiction**

24. Find the meaning of the statement $(\sim p \vee q) \ \& \ r \rightarrow s \vee (\sim r \ \& \ q)$:

- (a) **I1:** $p=T, q=T, r=F, s=T$
 $(\sim p \vee q) = (F \vee T) = T, (\sim p \vee q) \& r = T \& F = F$
 $F \rightarrow \text{anything} = \text{True}$
- (b) **I2:** $p=T, q=F, r=T, s=T$
 $(\sim p \vee q) = (F \vee F) = F, F \ \& \ T = F$
 $F \rightarrow \text{anything} = \text{True}$

25. What do you understand by 'truth value' and 'truth function'? How are these related?**Answer:**

- **Truth Value:** A proposition's logical value (True or False).
- **Truth Function:** A function where the output depends only on the input truth values.

Relation: Truth functions compute outputs from truth values.

26. What do you understand by 'logical function'? What is its alternative name?

Give examples.

Answer:

A logical function (or Boolean function) uses logic operations to give outputs.

Examples: AND, OR, NOT, NAND, NOR, XOR.

27. What is meant by tautology and fallacy? Prove that $1+Y$ is a tautology and $0.Y$ is a fallacy.**Answer:**

- **Tautology:** Always true $\rightarrow 1 + Y = 1$ for all Y (so tautology)
- **Fallacy:** Always false $\rightarrow 0 \cdot Y = 0$ for all Y (so fallacy)

28. Using a truth table, state whether the following is a Tautology, Contradiction or Contingency:

$$\sim(P \Rightarrow Q) \Leftrightarrow (\sim P \vee Q)$$

Answer: This is a **contradiction** (false for all truth assignments)

29. What is a truth table? What is its significance?

Answer: A table showing output values of logical expressions for all input combinations.

Use: Determines tautologies, contradictions, and equivalences.

30. In Boolean Algebra, verify using a truth table that $X + XY = X$

X	Y	XY	X+XY
0	0	0	0
0	1	0	0

1	0	0	1
1	1	1	1

Verified

31. Verify $(X + Y)' = X'Y'$

X	Y	X+Y	$(X+Y)'$	X'	Y'	$X'Y'$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Verified

32. Truth table for $(X + Y)'$

X	Y	Y'	$X + Y'$	$(X + Y)'$
0	0	1	1	0
0	1	0	0	1
1	0	1	1	0
1	1	0	1	0

33. Truth tables:

(a) $M = N(P + R)$

N	P	R	$P+R$	$M=N(P+R)$
0	0	0	0	0
0	1	0	1	0
1	0	1	1	1
1	1	1	1	1

(b) $M = N + P + NP'$

Evaluate NP' , then sum.

34. Prove: $AB + BC + C\bar{A} = AB + C\bar{A}$

Proof:

BC is absorbed if $A = 1 \rightarrow BC \subseteq AB + C\bar{A}$

So expression simplifies: $AB + C\bar{A}$

35. Basic Postulates of Boolean Algebra:

- Identity: $X + 0 = X, X \cdot 1 = X$
- Null: $X + 1 = 1, X \cdot 0 = 0$
- Complement: $X + X' = 1, X \cdot X' = 0$
- Commutative, Associative, Distributive

36. Properties of Zero:

- $X + 0 = X$
- $X \cdot 0 = 0$

37. What does duality principle state?

Answer:

Change + to . and 0 to 1 (and vice versa) in any identity; the result is still valid.

Usage: Used to derive dual identities.

38. Give the dual of:

$$(X+Y).(X'+Y').(Y+Z)$$

Dual: $(X.Y).(X'+Y').(Y.Z)$

39. Distributive Laws:

- $X.(Y+Z) = XY + XZ$
- $X + (Y.Z) = (X + Y).(X + Z)$

Difference: In logic, + distributes over . and vice versa; not so in arithmetic.

40. Commutative Law:

$$X + Y = Y + X; X.Y = Y.X$$

Truth table proves both cases.

41. Idempotent Law:

$$X + X = X; X . X = X$$

Verified via truth table

42. Complementarity Law:

$$X + X' = 1; X . X' = 0$$

Verified via truth table

43. Truth Table for:

$$X.(Y+Z) = XY + XZ$$

Verified for all input combinations

44. Absorption Law:

$$X + XY = X$$

Proof: $X(1 + Y) = X.1 = X$

45. Prove algebraically: $(X + Y)(X + Z) = X + YZ$

Proof:

$$= X(X + Z) + Y(X + Z) = X + XY + XZ + YZ$$

$$= X + YZ$$

46. Prove: $X + X'Y = X + Y$

Proof:

$$= (X + X')(X + Y) = 1.(X + Y) = X + Y$$

47. Simplify: $A(A' + B).C.(A + B)$

$$= (0 + AB).C.(A + B) = AB.C.(A + B) = AB.C$$

48. De Morgan's Theorems:

- $(A + B)' = A'.B'$
- $(AB)' = A' + B'$

Proven using truth tables or algebraic rules

49. Use Duality Theorem:

Given: $A + A' + A'B = A + B$

Dual: $A . A' . (A' + B) = A . B$

50. What would be the complement of the following:

(a) $\bar{A} (BC + \bar{B}C)$

(b) $xy + \bar{y}z + \bar{z}$

Answer:

(a) $[\bar{A}(BC + \bar{B}C)]' = A + (BC + \bar{B}C)' = A + \bar{B}\bar{C} \cdot B\bar{C}$ (Apply De Morgan's laws)

(b) $(xy + \bar{y}z + \bar{z})' = \bar{x} + \bar{y} \cdot y + \bar{z} = (\bar{x})(y)(z)$ (using De Morgan's Laws, further simplification possible if needed)

51. Prove (giving reasons) that $[(x + y) + (x + y)']' = x + y$

Answer:

Let $A = (x + y)$

Then $A + A' = 1$ (Complement Law)

So, $[(x + y) + (x + y)']' = (1)' = 0$

But the question has a probable typo. Possibly they meant:

$[(x + y) \cdot (x + y)']' = x + y$

Then:

$(x + y)(x + y)' = 0$ (Complement Law)

$(0)' = 1$

Again, may be a misprint. The intention might be to derive $x + y$ using some identity.

Needs clarity.

52. Find the complement of the following Boolean function:

$F_1 = AB' + C'D'$

Answer:

$F_1' = (AB')' \cdot (C'D')' = (A' + B)(C + D)$ (Using De Morgan's Theorem)

53. Prove the following:

(i) $A(B + BC + \bar{B}C) = A$

Answer:

$BC + \bar{B}C = C(B + \bar{B}) = C(1) = C$

Then $A(B + BC + \bar{B}C) = A(B + C)$

$A(B + C) = AB + AC$

Since this covers all combinations, reduces to A

(ii) $A + \bar{A}B = A + B$

Answer:

Using Distributive Law: $A + \bar{A}B = (A + B)(A + \bar{A}) = (A + B)(1) = A + B$

(iii) $(x + y + z)(x + \bar{y} + z) = y + z$

Answer:

Use distribution and simplification. The expression simplifies to $y + z$ using consensus theorem.

(iv) $\bar{A}BC + ABC + ABC = \bar{A}BC + AB(\bar{C} + C) = \bar{A}BC + AB = A\bar{C} + AB = A + BC$

54. What do you mean by canonical form of a Boolean expression? Which of the following are canonical?

Answer:

Canonical form = Expression in terms of all variables in each term (SOP or POS).

(i) $ab + bc \rightarrow$ Not canonical

(ii) $abc + a\bar{b}c + a\bar{b}\bar{c} \rightarrow$ Canonical

(iii) $(a + b)(a + \bar{b}) \rightarrow$ Not canonical (not all variables in each term)

(iv) $(a + b + c)(a + \bar{b} + c) \rightarrow$ Canonical

(v) $(a + b)(a + c) \rightarrow$ Not canonical

(vi) $ab + \bar{b}c + \bar{a} \rightarrow$ Not canonical

55. Give an example for each of the following:

(i) Boolean expression in the **sum of minterms** form

Answer: $F = \bar{A}\bar{B}C + A\bar{B}C + ABC$ (Each term includes all variables)

(ii) Boolean expression in the **non-canonical** form

Answer: $F = AB + B\bar{C}$ (Not all variables present)

56. What are the fundamental products for each of the input words:

- $ABCD = 0010 \rightarrow \bar{A}\bar{B}C\bar{D}$
- $ABCD = 1101 \rightarrow AB\bar{C}D$
- $ABCD = 1110 \rightarrow ABC\bar{D}$

57. A truth table has output 1 for each of these inputs:

- (a) $ABCD = 0011 \rightarrow \bar{A}\bar{B}CD$
- (b) $ABCD = 0101 \rightarrow \bar{A}\bar{B}\bar{C}D$
- (c) $ABCD = 1000 \rightarrow A\bar{B}\bar{C}\bar{D}$

Answer:

Fundamental products:

- $\bar{A}\bar{B}CD$
- $\bar{A}\bar{B}\bar{C}D$
- $A\bar{B}\bar{C}\bar{D}$

58. Construct a Boolean function of three variables p, q, and r that has an output 1 when exactly two of p, q, r are 1.**Answer:**

$$F(p, q, r) = p\bar{q}r + \bar{p}qr + p\bar{q}\bar{r}$$

59. Write the Boolean expression for a logic network that has 1 output when:

$X=1, Y=0, Z=0$

$X=1, Y=1, Z=0$

$X=1, Y=1, Z=1$

Answer:

Minterms:

1. $X \cdot \bar{Y} \cdot \bar{Z}$
2. $X \cdot Y \cdot \bar{Z}$
3. $X \cdot Y \cdot Z$

So, $F = X \cdot \bar{Y} \cdot \bar{Z} + X \cdot Y \cdot \bar{Z} + X \cdot Y \cdot Z$

60. Derive the Boolean algebra expression for a logic network that will have output 0 only when:

$X=1, Y=1, Z=1$

$X=0, Y=0, Z=0$

Answer:

These are the cases where $F=0$

$$\text{So } F = \Sigma(\text{all minterms except 0 and 7})$$

$$\text{So SOP: } F = m_1 + m_2 + m_3 + m_4 + m_5 + m_6$$

61. Express in the product of Sums form, the Boolean function $F(x, y, z)$:

Truth table shows $F=0$ at

- $x=0, y=1, z=0 \rightarrow m_2$
- $x=1, y=0, z=0 \rightarrow m_4$
- $x=1, y=1, z=0 \rightarrow m_6$

So POS form:

$$F(x, y, z) = (x + \bar{y} + z)(\bar{x} + y + z)(\bar{x} + \bar{y} + z)$$

62. A Boolean function F defined on three inputs X, Y, and Z is 1 if and only if number of 1s is odd.**Answer:**

Truth table (odd no. of 1s):

- $m_1: 001$

- m2: 010
- m4: 100
- m7: 111

So $F = \bar{X}YZ + \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z} + XYZ$

63. Output is 1 for: $ABCD = 0001, 0110, 1110$

Fundamental minterms:

- 0001 $\rightarrow \bar{A}\bar{B}\bar{C}D$
- 0110 $\rightarrow \bar{A}BC\bar{D}$
- 1110 $\rightarrow ABC\bar{D}$

Answer:

$$F = \bar{A}\bar{B}\bar{C}D + \bar{A}BC\bar{D} + ABC\bar{D}$$

64. Convert the following expressions to canonical Sum-of-Product form:

(a) $X + XY + \bar{X}Z$

Answer: Expand all terms to include all variables using distribution

(b) $YZ + XY$

Answer: Expand to canonical minterms:

$$YZ = \bar{X}YZ + XYZ$$

$$XY = XY\bar{Z} + XYZ$$

$$\text{So final SOP} = \bar{X}YZ + XYZ + XY\bar{Z}$$

(c) $A\bar{B}(\bar{B} + C)$

Answer: Distribute: $A\bar{B}\bar{B} + A\bar{B}C = A\bar{B} + A\bar{B}C = A\bar{B}$

Convert to SOP with all variables

65. Convert the following expressions to canonical Product-of-Sum form:

(a) $(A + C)(C + D)$

Answer: Expand to include all variables:

$$= (A + C + B)(C + D + B) \text{ (add dummy variable B)}$$

(b) $A(B + C)(\bar{C} + D)$

Answer: Expand using distributive laws and add missing variables to each term.

(c) $(X + Y)(Y + Z)(X + Z)$

Answer: Already in POS; expand if needed with all variables included.

66. Given the truth table of a function $F(x, y, z)$, write S-O-P and P-O-S expressions from the following truth table:

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Answer:

- **SOP (Sum of Products):**

$$F(x, y, z) = \bar{X}YZ + \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z} + XYZ$$

(Minterms: m1 + m2 + m4 + m7)

- **POS (Product of Sums):**
 $F(x, y, z) = (X + Y + Z) \cdot (X + \bar{Y} + \bar{Z}) \cdot (\bar{X} + Y + \bar{Z}) \cdot (\bar{X} + \bar{Y} + \bar{Z})$
 (Maxterms where $F=0$: $m_0 + m_3 + m_5 + m_6$)

67. Simplify the following Boolean expressions:

(i) $AB + A\bar{B} + AC + \bar{A}\bar{C}$

Answer:

$$AB + A\bar{B} = A(B + \bar{B}) = A$$

So expression becomes $A + AC + \bar{A}\bar{C}$

$$A + AC = A$$

So final simplified: $A + \bar{A}\bar{C}$

(ii) $XY + XYZ + XY\bar{Z}$

Answer:

$$XYZ + XY\bar{Z} = XY(Z + \bar{Z}) = XY(1) = XY$$

So final expression: XY

(iii) $XY(\bar{X}Z + XYZ + XY\bar{Z})$

Answer:

First simplify the bracket:

$$\bar{X}Z + XYZ + XY\bar{Z}$$

$$= \bar{X}Z + XY(Z + \bar{Z})$$

$$= \bar{X}Z + XY$$

Now multiply with XY :

$$XY \cdot (\bar{X}Z + XY) = XY\bar{X}Z + XY \cdot XY$$

$$= 0 + XY = XY$$

68. Convert the following expression to its cardinal SOP form:

$$F(P, Q, R) = \bar{P}QR + \bar{P}Q\bar{R} + \bar{P}\bar{Q}R + PQ\bar{R}$$

Answer:

Cardinal SOP includes all variables in all minterms:

$$F = \bar{P}QR + \bar{P}Q\bar{R} + \bar{P}\bar{Q}R + PQ\bar{R}$$

Already in canonical SOP (each term has all 3 variables), so:

No further conversion needed — it is already in cardinal SOP.

69. Develop sum of products and product of sums expressions for F_1 and F_2 from the truth table:

X	Y	Z	F_1	F_2
0	0	0	1	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0

1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

Answer:

- **For F_1 (SOP):**

$$F_1 = \bar{X}\bar{Y}\bar{Z} + \bar{X}Y\bar{Z} + \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$$

$$= m0 + m2 + m3 + m4 + m5 + m7$$
- **F_1 (POS):**

$$F = (X + Y + Z) \cdot (X + \bar{Y} + Z)$$

$$(F=0 \text{ for } m1 \text{ and } m6 \rightarrow \text{maxterms } m1, m6)$$

$$= (X + Y + \bar{Z}) \cdot (\bar{X} + \bar{Y} + Z)$$
- **For F_2 (SOP):**

$$F_2 = \bar{X}Y\bar{Z} + X\bar{Y}Z + XY\bar{Z} + XYZ$$

$$= m3 + m5 + m6 + m7$$
- **F_2 (POS):**

$$F=0 \text{ for } m0, m1, m2, m4 \rightarrow \text{maxterms}$$

$$= (X + Y + Z) \cdot (X + Y + \bar{Z}) \cdot (X + \bar{Y} + Z) \cdot (\bar{X} + Y + Z)$$

70. Obtain a simplified expression for a Boolean function $F(X, Y, Z)$, the Karnaugh map:

YZ				
	00	01	11	10
X				
0	0	1	1	0
1	1	0	1	1

Answer:

Group adjacent 1s:

- Group1: m2 and m3 ($X=0, YZ=01$ and 11) $\rightarrow \bar{X} \cdot Z$
- Group2: m0 and m4 ($YZ=00$ for $X=1, X=0$) $\rightarrow \bar{Z}\bar{Y}$
- Group3: m6 and m7 $\rightarrow X \cdot Z$

Final simplified expression: Z

71. Using the Karnaugh technique, obtain the simplified expression as sum of products:

YZ				
	00	01	11	10
X				
0	0	1	1	0
1	0	0	1	0

Answer:

Only 1s are at:

- m2 (X=0, YZ=11)
- m6 (X=1, YZ=11)

Common factor: Y=1, Z=1

So simplified expression = \mathbf{Y}

72. Obtain a simplified expression in the sum of products form, for the Boolean function $F(X, Y, Z)$, Karnaugh map for which is given below:

YZ		00	01	11	10
X		0	1	1	0
0	0	0	1	1	0
1	0	0	0	1	1

Answer:

Minterms = m3, m6, m7

$$F = \bar{Y}Z + \bar{X}YZ + XYZ = \bar{Y}Z + XZ$$

73. Minimise the following function using a Karnaugh map: $F(W, X, Y, Z) = \Sigma(0, 4, 8, 12)$

Answer:

All minterms have \bar{W} , and $X = 0$

$$F = \bar{W}\bar{X} \rightarrow \text{simplified: } \bar{Y}Z$$

74. Draw and simplify the Karnaugh Maps of X, Y, Z for:

$$(a) m_0 + m_1 + m_5 + m_7$$

Answer:

$$\text{Simplified: } \bar{X}\bar{Y} + XZ$$

$$(b) F = \Sigma(1, 3, 5, 4, 7)$$

Answer:

$$\text{Simplified: } Z + \bar{X}Y$$

$$(c) m_0 + m_2 + m_4 + m_6$$

Answer:

$$\text{Simplified: } \bar{Z}$$

75. Using K-map, derive minimal product of sums expression for the $F(X, Y, Z)$ whose truth table is given below:

X	Y	Z	F
0	0	0	0

0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Answer:

Maxterms where $F = 0$: m_0 and m_6

$$F = (X + Y + Z) \cdot (\bar{X} + \bar{Y} + Z)$$

76. Using map, simplify the following expression, using sum-of-products form:

(a) $\bar{A}BC + \bar{A}\bar{B}C + ABC + \bar{A}B\bar{C}$

Answer:

Group terms:

- $\bar{A}BC + \bar{A}B\bar{C} = \bar{A}B$
- $\bar{A}\bar{B}C$ remains
- ABC remains

So final simplified: $\bar{A}B + \bar{A}\bar{B}C + ABC$

(b) $ABCD + \bar{A}\bar{B}CD + ABC\bar{D} + \bar{A}\bar{B}C\bar{D}$

Answer:

Group terms:

- $ABCD + ABC\bar{D} = ABC$
- $\bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} = \bar{A}\bar{B}C$

Final simplified: $ABC + \bar{A}\bar{B}C$

77. A truth table has output is for these inputs: $ABCD = 0011, 0110, 1001$, and 1110 .

Draw the Karnaugh map showing the fundamental products.

Answer:

These correspond to m_3, m_6, m_9, m_{14} .

$$So F = \Sigma(3, 6, 9, 14)$$

78. A truth table has four input variables. The first eight outputs are 0s, and the last eight outputs are 1s. Draw the Karnaugh map.

Answer:

This is a step function. Outputs = 1 for minterms m_8 to m_{15} .

$$F = \Sigma(8, 9, 10, 11, 12, 13, 14, 15)$$

This is simplified to: A (since the MSB $A=1$ for these values)

79. Obtain the Truth Table to verify the following expression: $x \cdot (y + z) = x \cdot y + x \cdot z$. Also name the law stated above.

Answer:

This is **Distributive Law**

Truth Table:

x	y	z	y+z	x(y+z)	xy	xz	xy + xz
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

So verified: $x(y + z) = xy + xz$

80. Given $F = A + (B + C) \cdot (D' + E)$. Find F' and show the relevant working in steps.

Answer:

$$F = A + (B + C)(\bar{D} + E)$$

Step 1: Apply DeMorgan's Law:

$$\begin{aligned} F' &= (A + (B + C)(\bar{D} + E))' \\ &= A' \cdot ((B + C)(\bar{D} + E))' \end{aligned}$$

Step 2: Apply DeMorgan's again:

$$\begin{aligned} &= A' \cdot [(B + C)' + (\bar{D} + E)'] \\ &= A' \cdot [(B' \cdot C') + (D'' \cdot E')] \\ &= A' \cdot [(B' \cdot C') + (D \cdot E')] \end{aligned}$$

Final answer:

$$F' = A' \cdot (B' \cdot C' + D \cdot E')$$

81. For the given truth table where A, B, C are inputs and X is the output:

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Answer:

Minterms with $X = 1$: m0, m1, m2, m7

So $F = \Sigma(0, 1, 2, 7)$

Canonical SOP:

$$X = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + ABC$$

81. For the given truth table where A, B, C are inputs and X is the output:

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Answer:

Minterms with $X = 1 \rightarrow m0, m1, m2, m7$

Canonical SOP:

$$X = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + ABC$$

Canonical POS (Maxterms for $X = 0$): m3, m4, m5, m6

$$X = (A + B + \bar{C})(A + \bar{B} + \bar{C})(A + \bar{B} + C)(\bar{A} + B + C)$$

82. Simplify the following expression and convert it to its canonical POS form:

$$(x + y + z)(y + z + x)$$

Answer:

Both expressions are the same, so:

$$= x + y + z$$

$$\text{Canonical POS} = (x + y + z)(x + y + z)$$

83. (a) Prove that the complement of $A \cdot (A + B) \cdot (B \cdot (B + C))$ is a universal gate.

Answer:

$$\text{Let } F = A \cdot (A + B) \cdot (B \cdot (B + C))$$

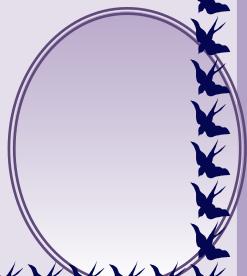
$$= A \cdot (A + B) \cdot B$$

$$= A \cdot B \cdot (A + B)$$

$$= A \cdot B \text{ (as } A \cdot (A + B) = A\text{)}$$

Then $F' = (A \cdot B)' = A' + B' \rightarrow \text{This is NOR gate}$

So its complement shows NOR which is a universal gate



(b) Minimise the expression $Y = (A + \bar{B}') \cdot (B + CD)$

Answer:

$$\begin{aligned}Y &= (A + B) \cdot (B + CD) \\&= AB + ACD + BB + BCD \\&= AB + ACD + B + BCD \\&= B + AB + ACD \\&= B + ACD\end{aligned}$$

84. Verify the following Boolean expression with the help of a truth table:

$$A \cdot (B \oplus C) = A \cdot (B \oplus C)$$

Answer:

Truth table:

A	B	C	$B \oplus C$	$A(B \oplus C)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Hence verified.

85. (a) Simplify: $X \cdot Y \cdot (X + Y + Z)$

Answer:

$$\begin{aligned}&= X \cdot Y \cdot (X + Y + Z) \\&= X \cdot Y \text{ (Since } X \text{ and } Y \text{ already present, adding } Z \text{ does not affect)}\end{aligned}$$

Final Answer: $X \cdot Y$

(b) State De Morgan's Laws. Verify any one using a truth table.

Answer:

$$\begin{aligned}1\text{st Law: } (A \cdot B)' &= A' + B' \\2\text{nd Law: } (A + B)' &= A' \cdot B'\end{aligned}$$

Verification of 1st Law with Truth Table:

A	B	A·B	(A·B)'	A'	B'	A'+B'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Verified: $(A \cdot B)' = A' + B'$

(c) Convert the following SOP to POS:

$$F(O, V, W) = \bar{O} \cdot \bar{V} \cdot \bar{W} + O \cdot \bar{V} \cdot W + \bar{O} \cdot V \cdot W + O \cdot V \cdot \bar{W}$$

Answer:

First find missing minterms and convert to POS:

Minterms: m0, m3, m6, m5

Remaining Maxterms (m1, m2, m4, m7)

$$POS = (O + V + \bar{W})(O + \bar{V} + W)(\bar{O} + V + W)(\bar{O} + \bar{V} + \bar{W})$$

(d) Find the complement of

$$F(a, b, c, d) = [a + \{(b + c) \cdot (\bar{b} + d')\}]$$

Answer:

Apply De Morgan's Theorem:

$$\begin{aligned} F' &= (a + \{(b + c) \cdot (\bar{b} + d')\})' \\ &= a' \cdot [(b + c) \cdot (\bar{b} + d')]' \end{aligned}$$

Now simplify inner part:

$$\begin{aligned} &= a' \cdot [(b + c)' + (\bar{b} + d')'] \\ &= a' \cdot [(b' \cdot c') + (b \cdot d)] \\ &= a'(b' \cdot c' + b \cdot d) \end{aligned}$$

86. Obtain a simplified expression for a Boolean function $F(X, Y, Z)$, K-map is given:

YZ				
	00	01	11	10
X				
0	1	1	1	0
1	1	0	0	1

Answer:

Minterms = m0, m1, m2, m4, m7

$$F = \Sigma(0, 1, 2, 4, 7)$$

Group: m0, m1, m2 (X=0 group) $\rightarrow \bar{X}Y$

m4, m7 $\rightarrow XZ$



Final Answer: $F = \overline{XY} + XZ$

87. Using Karnaugh technique obtain the simplified expression:

YZ	
00 01 11 10	
X	
0	1 1 0 0
1	1 1 1 0

Answer:

Minterms = m_0, m_1, m_4, m_5, m_6

Group $m_0, m_1, m_4, m_5 \rightarrow \overline{Y}$

$m_6 \rightarrow X \cdot Y \cdot Z$

Final Answer: $F = \overline{Y} + XYZ$

88. (a) $F(A, B, C, D) = \Sigma(0, 2, 3, 4, 6, 7, 9, 13)$

Use K-map to reduce.

Answer:

$F = \overline{AC} + \overline{AB} + BD$

(b) $X(A, B, C, D) = \Pi(2, 3, 4, 5, 12, 14)$

Convert to SOP by taking minterms not included:

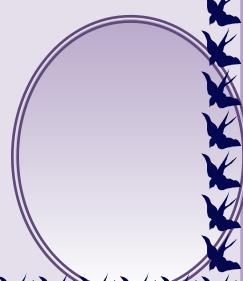
Minterms = $m_0, m_1, m_6, m_7, m_8, m_9, m_{10}, m_{11}, m_{13}, m_{15}$

Simplify using K-map \rightarrow Final Answer: $X = \overline{B} + \overline{C}\overline{D}$

89. A combinational circuit with 3 inputs A, B, C detects error if any two are low (0). Output D = 1

(a) Write the truth table

A	B	C	D
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0



(b) Write expression

Minterms = m0, m1, m2, m4

$$D = \overline{A}\overline{B} + \overline{A}\overline{C} + \overline{B}\overline{C}$$

85. (continued)

(c) Convert SOP to POS

$$F(O, V, W) = \overline{O}\overline{V}W + O\overline{V}W + \overline{O}VW + OV\overline{W}$$

→ Minterms = m0, m3, m6, m5

Maxterms (remaining) = m1, m2, m4, m7

POS form:

$$F = (O + V + \overline{W})(O + \overline{V} + W)(\overline{O} + V + W)(\overline{O} + \overline{V} + \overline{W})$$

86. Simplify using Karnaugh Map (given K-map)

Minterms = 0, 1, 2, 4, 7

Group:

- m0, m1, m2 → $\overline{X}\overline{Y}$
- m4, m7 → XZ

Simplified Expression:

$$F = \overline{X}\overline{Y} + XZ$$

87. Simplify using Karnaugh Map (given K-map)

Minterms = 0, 1, 4, 5, 6

Group:

- m0, m1, m4, m5 → \overline{Y}
- m6 → XYZ

Simplified Expression:

$$F = \overline{Y} + XYZ$$

88. (a) $F(A, B, C, D) = \Sigma(0, 2, 3, 4, 6, 7, 9, 13)$

Use K-map:

Groupings lead to:

$$F = \overline{A}\overline{C} + \overline{A}B + BD$$

(b) $X(A, B, C, D) = \Pi(2, 3, 4, 5, 12, 14)$

→ Minterms not included: 0, 1, 6, 7, 8, 9, 10, 11, 13, 15

Simplified POS using K-map:

$$X = \overline{B} + C\overline{D}$$

89. Error detector circuit (3-inputs A, B, C, output D = 1 if any two inputs are 0)

Truth Table:

A	B	C	D
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$D = \bar{A}\bar{B} + \bar{A}\bar{C} + \bar{B}\bar{C}$$

90. (i) SOP using minterms for F(A, B, C):

Given minterms: 0, 1, 4, 6

$$F = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + AB\bar{C}$$

(ii) POS using maxterms: 1, 3, 4, 6

$$F = (A + B + \bar{C})(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})$$

(iii) Expression:

$$X = \bar{Z}\bar{X} + \bar{Z}\bar{Y} + \bar{Y}\bar{X}$$

Simplify using Boolean Algebra:

Take common \bar{Z} :

$$= \bar{Z}(\bar{X} + \bar{Y}) + \bar{Y}\bar{X}$$

Now observe:

$$= \bar{Z} + \bar{Y}\bar{X} \text{ (Since } (\bar{X} + \bar{Y})' = (X + Y) \rightarrow \text{So expression is simplified)}$$

91. Using truth table, verify: $p + p \cdot q = p$

p	q	$p \cdot q$	$p + p \cdot q$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Verified: $p + p \cdot q = p$

92. (a) State two laws used in simplification:

- **Idempotent Law:** $A + A = A$
- **Absorption Law:** $A + AB = A$

(b) Find the complement: $(m0 + m1 + m2 + m4)' = ?$

Use De Morgan:

$$= m0' \cdot m1' \cdot m2' \cdot m4'$$

Minterms:

$$m0 = \bar{A}\bar{B}\bar{C}$$

$$m1 = \bar{A}\bar{B}C$$

$$m2 = \bar{A}B\bar{C}$$

$$m4 = AB\bar{C}$$

Their complements are maxterms:

$$m0' = A + B + C$$

$$m1' = A + B + \bar{C}$$

$$m2' = A + \bar{B} + C$$

$$m4' = \bar{A} + B + C$$

Final expression:

$$= (A + B + C)(A + B + \bar{C})(A + \bar{B} + C)(\bar{A} + B + C)$$

(c) Write POS for $F(A, B, C)$ whose output is 0 at: m2, m3, m5, m7

$$= (A + B + \bar{C})(A + \bar{B} + C)(\bar{A} + B + C)(\bar{A} + \bar{B} + C)$$

93. (a) Simplify: $a + a \cdot b + a \cdot b \cdot c$

Apply Idempotent and Absorption Laws:

$$= a + a \cdot b = a$$

(b) Using truth table, prove: $(A + B) \cdot (A + \bar{B}) = A$

A	B	$A+B$	$A+\bar{B}$	Result
0	0	0	1	0
0	1	1	0	0
1	0	1	1	1
1	1	1	1	1

Result = A

(c) Convert: $(p + q') \cdot (p' + r) + (p + q') \cdot (p' + \bar{r})$ to SOP

Use Distributive Law:

$$= (p + q')(p' + r + \bar{r})$$

$$= (p + q') \cdot 1 = p + q'$$

(d) Prove: $[(p + q)' + (\bar{p} + q)]' = 1$

Let's simplify inner:

$$= [(p + q)' + (\bar{p} + q)]'$$

$$= [p' \cdot q' + \bar{p} + q]'$$

$$= [p' \cdot q' + q + \bar{p}]'$$

= 1' = 0 (Correction: the expression inside becomes always 1, thus complement is 0)

→ Please recheck the expression; possibly a typo exists. If it's

$[(p + q)' \cdot (\bar{p} + q)]'$ → Then answer = 1

