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Java 40 programs on_arrays

1. Finding the Largest Element in an Array
public class LargestElement {
public static void main(String[] args) {
int[] arr={5, 3, 9, 2, 8};
int max = arr[0];
for (int num : arr) {
if (num > max) {
max = num;
}
}
System.out.printIn("Largest element: * + max);
}
}

2. Finding the Smallest Element in an Array
public class SmallestElement {
public static void main(String[] args) {
int[]arr={4, 1,6, 3, 7};
int min = arr[0];
for (int num : arr) {
if (num < min) {
min = num;
}
}
System.out.printIn(*Smallest element: " + min);
}
}

public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arrli];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;

}

System.out.print(“"Reversed array: ");

for (int num : arr) {
System.out.print(num + " ");

}

¥

}
4. Sorting an Array Using Bubble Sort

3. Reversing an Array
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public class BubbleSort {
public static void main(String[] args) {
int[] arr = {5, 1, 4, 2, 8};
for (inti=0;i<arr.length - 1; i++) {
for (intj=0;j<arrlength-1-1i; j++) {
if (arr[j] >arr[j +1]) {
int temp = arr[j];
arr[j] = arr[j + 1J;
arr[j + 1] = temp;
}
}

¥
System.out.print("Sorted array: *);

for (int num : arr) {
System.out.print(num + " "');

¥
¥
¥

5. Counting Even and Odd Elements in an Array
public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;
for (int num : arr) {
if (hum% 2==0){
evenCount++;
}else {
oddCount++;
}
}

System.out.printin("Even count: " + evenCount);
System.out.printIn(*Odd count: " + oddCount);

¥
¥

public class MergeArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5};
int[] arr2 = {2, 4, 6};
int[] merged = new int[arrl.length + arr2.length];

6. Merging Two Arrays

for (inti =0; i <arrl.length; i++) {
merged[i] = arrl[i];

}

for (int1=0; i <arr2.length; i++) {
merged[arrl.length + i] = arr2[i];
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}

System.out.print("Merged array: ");
for (int num : merged) {
System.out.print(num + " *);

¥
¥

¥
7. Finding the Sum of All Elements in an Array

public class ArraySum {
public static void main(String[] args) {
int[] arr = {5, 10, 15, 20, 25};
int sum = 0;
for (int num : arr) {
sum += num;
}
System.out.printIn("Sum of all elements: " + sum);
}
}

public class CopyArray {
public static void main(String[] args) {
int[] original = {1, 2, 3, 4, 5};
int[] copy = new int[original.length];

8. Copying an Array

for (inti = 0; i < original.length; i++) {
copy[i] = originalli];

System.out.print("Copied array: ");
for (int num : copy) {
System.out.print(num + " );

¥
¥
¥

9. Removing Duplicates from an Array
import java.util. Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[]arr={1, 2, 2, 3, 4, 4, 5};
Arrays.sort(arr);
int[] temp = new int[arr.length];
intj=0;

for (inti=0;i<arr.length - 1; i++) {
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if (arr[i] '=arr[i + 1]) {
temp[j++] = arr[i];

temp[j++] = arr[arr.length - 1];

int[] uniqueArr = Arrays.copyOf(temp, j);
System.out.print("Array after removing duplicates: ");
for (int num : uniqueArr) {

System.out.print(num + " *);

¥
¥

}
10. Binary Search in a Sorted Array

import java.util. Arrays;

public class BinarySearch {
public static void main(String[] args) {
int[] arr = {3, 1, 4, 2, 5};
Arrays.sort(arr); // Array must be sorted for binary search
int target = 4;
int result = binarySearch(arr, target);

if (result ==-1) {
System.out.printIn("Element not found.");
}else {
System.out.printin("Element found at index: " + result);
}
}

public static int binarySearch(int[] arr, int target) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
}
if (arr[mid] < target) {
left=mid + 1;
}else {
right =mid - 1;
}
}
return -1;
}
}
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11. Finding the Largest Element in an Array
public class LargestElement {
public static void main(String[] args) {
int[] arr={5, 3, 9, 2, 8};
int max = arr[0];
for (int num : arr) {
if (num > max) {
max = num;
}
}
System.out.printin(“Largest element: " + max);
}
}

12. Finding the Smallest Element in an Array
public class SmallestElement {
public static void main(String[] args) {
int[Jarr=4{4, 1,6, 3, 7};
int min = arr[0];
for (int num : arr) {
if (num < min) {
min = num;
}
}
System.out.printin("Smallest element: " + min);
}
}

public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arrli];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;

}

System.out.print(“Reversed array: ");

for (int num : arr) {
System.out.print(num + " ");

¥
¥

}
14. Sorting an Array Using Bubble Sort

public class BubbleSort {
public static void main(String[] args) {
int[]arr={5, 1, 4, 2, 8};
for (inti=0;i<arr.length - 1; i++) {

13. Reversing an Array
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for (intj=0;j<arrlength-1-1i; j++) {
if (arrj] >arrfj + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1J;
arr[j + 1] = temp;
}
}

}
System.out.print("Sorted array: ");

for (int num : arr) {
System.out.print(num + " );

¥
¥

}
15. Counting Even and Odd Elements in an Array

public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;
for (int num : arr) {
if (hum% 2==0){
evenCount++;
}else {
oddCount++;
}
}

System.out.printIn("Even count: " + evenCount);
System.out.printIn("Odd count: " + oddCount);

¥
¥

public class MergeArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5};
int[] arr2 = {2, 4, 6};
int[] merged = new int[arrl.length + arr2.lengthl];

16. Merging Two Arrays

for (int i =0; i <arrl.length; i++) {
merged[i] = arrl[i];

}

for (inti=0; i <arr2.length; i++) {
merged[arrl.length + i] = arr2[i];

}

System.out.print("Merged array: ");
for (int num : merged) {
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System.out.print(num + " ");

¥
¥

¥
17. Finding the Sum of All Elements in an Array

public class ArraySum {
public static void main(String[] args) {
int[] arr = {5, 10, 15, 20, 25};
int sum = 0;
for (int num : arr) {
sum += num;
}
System.out.printIn("Sum of all elements: " + sum);
}
}

public class CopyArray {
public static void main(String[] args) {
int[] original = {1, 2, 3, 4, 5};
int[] copy = new int[original.length];

18. Copying an Array

for (inti = 0; i < original.length; i++) {
copy[i] = originalli];
}

System.out.print("Copied array: ");
for (int num : copy) {
System.out.print(num + " );

¥
¥
¥

19. Removing Duplicates from an Array
import java.util. Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[] arr={1, 2, 2, 3, 4, 4, 5};
Arrays.sort(arr);
int[] temp = new int[arr.length];
intj=0;

for (inti = 0; i <arr.length - 1; i++) {
if (arr[i] '=arr[i + 1]) {
temp[j++] = arr[i];
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temp[j++] = arr[arr.length - 1];

int[] uniqueArr = Arrays.copyOf(temp, j);
System.out.print("Array after removing duplicates: ");
for (int num : uniqueArr) {

System.out.print(num + " *);

¥
¥

}
20. Binary Search in a Sorted Array

import java.util. Arrays;

public class BinarySearch {
public static void main(String[] args) {
int[] arr = {3, 1, 4, 2, 5};
Arrays.sort(arr); // Array must be sorted for binary search
int target = 4;
int result = binarySearch(arr, target);

if (result ==-1) {
System.out.printin("Element not found.");
}else {
System.out.printin("Element found at index: " + result);
}
}

public static int binarySearch(int[] arr, int target) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
}
if (arr[mid] < target) {
left = mid + 1;
}else {
right = mid - 1;
}
}
return -1;
}

}
21. Finding the Second Largest Element in an Array

public class SecondLargest {
public static void main(String[] args) {
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int[]arr=4{4,7,1,9, 3};
int largest = Integer. MIN_VALUE, secondLargest =
Integer.MIN_VALUE;

for (int num : arr) {
if (num > largest) {
secondLargest = largest;
largest = num;
} else if (hum > secondLargest && num != largest) {
secondLargest = num;

¥
¥

System.out.printin("Second largest element: " +
secondLargest);

¥
¥

22. Inserting an Element at a Specific Position in an Array

public class InsertElement {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int element = 10;
int position = 3;

int[] newArr = new int[arr.length + 1];

for (inti=0,j=0;i<newArr.length; i++) {
if (i == position) {
newArr[i] = element;
}else {
newArr[i] = arr[j++];
}
}

System.out.print("Array after insertion: ");
for (int num : newAurr) {
System.out.print(num + " ");

¥
¥
¥

23. Deleting an Element from a Specific Position in an Array

public class DeleteElement {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int position = 2;
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int[] newArr = new int[arr.length - 1];

for (inti=0,j=0;i<arrlength; i++) {
if (i == position) continue;
newArr[j++] = arrl[i];

}

System.out.print("Array after deletion: ");
for (int num : newArr) {
System.out.print(num + " ");

¥
¥

}
24. Finding the Frequency of Each Element in an Array

public class FrequencyCount {
public static void main(String[] args) {
int[] arr =42, 3, 2, 4,5, 3, 5};
boolean[] visited = new boolean[arr.length];

for (inti=0; i <arr.length; i++) {
if (visited[i]) {
int count = 1;
for (intj=i+1;j<arrlength; j++) {
if (arr[i] == arr[j]) {
visited[j] = true;
count++;
}
}
System.out.printin(arr[i] + " occurs " + count + " times");
}
}
}

}
25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix)

public class DiagonalSum {
public static void main(String[] args) {
int[][] matrix = {
{1,2,3},
{4, 5, 6},
{7, 8,9}
3

int sum = 0;
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for (int i = 0; i < matrix.length; i++) {
sum += matrix[i][i];
}
System.out.printIn("Sum of diagonal elements: " + sum);
}
}

26. Transposing a Matrix

public class MatrixTranspose {
public static void main(String[] args) {
int[][] matrix = {
{1,2,3},
{4,5, 6}
j

int[][] transpose = new int[matrix[0].length][matrix.length];

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
transpose[j][i] = matrix[i][j];

¥

System.out.printin("Transpose of the matrix:");
for (int[] row : transpose) {

for (int val : row) {

System.out.print(val + " ");

}

System.out.printIn();
}

}

}
27. Shifting Elements in an Array to the Left

public class LeftShiftArray {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int shiftCount = 2;

for (int i = 0; i < shiftCount; i++) {
int first = arr[0];
for (intj = 0; j <arr.length - 1; j++) {
arr[j] = arr[j + 1];

arrfarr.length - 1] = first;

¥
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System.out.print("Array after left shift: ");
for (int num : arr) {
System.out.print(num + " ");

¥
¥

}
28. Rotating Elements in an Array to the Right

public class RightRotateArray {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int rotateCount = 2;

for (int i = 0; i < rotateCount; i++) {
int last = arr[arr.length - 1];
for (intj = arr.length - 1; j > 0; j--) {
arrf[j] = arr[j - 1];
}
arr[0] = last;
}

System.out.print("Array after right rotation: ");
for (int num : arr) {
System.out.print(num + " ");

¥
¥
¥

29. Finding the Pair of Elements with a Given Sum

public class PairWithSum {
public static void main(String[] args) {
int[] arr = {1, 4, 5, 2, 3};
int targetSum = 6;

System.out.printIn("Pairs with sum " + targetSum + ":");
for (inti =0; i <arr.length; i++) {
for (intj =i+ 1; j <arr.length; j++) {
if (arr[i] + arr[j] == targetSum) {
System.out.printin("(" + arr[i] + ", " + arr[j] +")");
}
}
}
}
}

30. Counting Positive, Negative, and Zero Elements in an Array
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public class CountPosNegZero {
public static void main(String[] args) {
int[] arr={3,-1,0, -3,5, 0, -2, 2},
int positiveCount = 0, negativeCount = 0, zeroCount = 0;

for (int num : arr) {
if (num >0) {
positiveCount++;
}elseif (num<0) {
negativeCount++;
}else {
zeroCount++;
}
}

System.out.printIn("Positive count: " + positiveCount);
System.out.printIn("Negative count: " + negativeCount);
System.out.printin(“Zero count: " + zeroCount);

31. Reversing an Array
public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arr[i];
arr[i] = arr[arr.length - i - 1];
arr[arr.length - i - 1] = temp;

}

System.out.print("Reversed Array: ");

for (int num : arr) {
System.out.print(num + " ");

¥
¥
¥

32. Removing Duplicates from an Array
import java.util.Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[]arr={1, 2, 2, 3, 4, 4, 5};
int[] uniqueArr = Arrays.stream(arr).distinct().toArray();
System.out.print("Array after removing duplicates: ");
for (int num : uniqueAurr) {
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System.out.print(num + " ");

¥
¥
¥

33. Finding the Intersection of Two Arrays
import java.util.HashSet;

public class Arraylntersection {
public static void main(String[] args) {
int[] arrl = {1, 2, 3, 4, 5};
int[] arr2 = {3, 4, 5, 6, 7},
HashSet<Integer> set = new HashSet<>();

for (inti:arrl) {
set.add(i);
}

System.out.print("Intersection: ");
for (inti: arr2) {
if (set.contains(i)) {
System.out.print(i + " ");
}
}
}

}
34. Merging Two Sorted Arrays

import java.util.Arrays;

public class MergeSortedArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5, 7};
int[] arr2 = {2, 4, 6, 8};
int[] merged = new int[arrl.length + arr2.length];

inti=0,j:0,k:o;
while (i <arrl.length && j < arr2.length) {
merged[k++] = (arr1[i] < arr2[j]) ? arrd[i++] : arr2[j++];

while (i <arrl.length) merged[k++] = arrl[i++];
while (j < arr2.length) merged[k++] = arr2[j++];

System.out.print("Merged Array: ");
for (int num : merged) {
System.out.print(num + " ");

¥
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¥
¥

35. Finding the Maximum Product of Two Elements
public class MaxProduct {
public static void main(String[] args) {
int[] arr = {1, 20, 3, 4, 5},
int max1 = Integer.MIN_VALUE, max2 =
Integer.MIN_VALUE;

for (int num : arr) {
if (num > max1) {
max2 = max1;
max1 = num;
} else if (num > max2) {
max2 = num;

¥
¥

System.out.printIn(*Maximum product of two elements: " +
(max1 * max2));

¥
¥

36. Finding Missing Number in a Sequence (1 to N)
public class MissingNumber {
public static void main(String[] args) {
int[] arr = {1, 2, 4, 5, 6}; // Missing 3
int n = arr.length + 1,
inttotalSum=n*(n+1)/2;

for (int num : arr) {
totalSum -= num;
}
System.out.printIn(*Missing number: " + totalSum);
}
}

37. Counting the Number of Even and Odd Elements
public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;

for (int num : arr) {
if (num % 2 ==0) {
evenCount++;

}else {
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oddCount++;

¥
¥

System.out.printin("Even count: " + evenCount);
System.out.printIn(*Odd count: " + oddCount);

¥
¥

38. Finding the Longest Sequence of Consecutive Numbers
import java.util.HashSet;

public class LongestConsecutiveSequence {
public static void main(String[] args) {
int[] arr = {1, 9, 3, 10, 4, 20, 2};
HashSet<Integer> set = new HashSet<>();
int maxLength = 0;

for (int num : arr) set.add(num);

for (int num : arr) {
if (!set.contains(num - 1)) {
int currentNum = num;
int length = 1;
while (set.contains(currentNum + 1)) {
currentNum-++;
length++;
}
maxLength = Math.max(maxLength, length);
}
}

System.out.printin("Length of longest consecutive sequence:
" + maxLength);

¥
¥

39. Checking if an Array is a Palindrome
public class PalindromeArray {
public static void main(String[] args) {
int[]arr={1, 2, 3, 2, 1};
boolean isPalindrome = true;

for (inti=0; i <arr.length / 2; i++) {
if (arr[i] = arr[arr.length - i - 1]) {
isPalindrome = false;
break;

¥
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¥
System.out.printin("lIs array a palindrome? " + isPalindrome);
¥

}
40. Splitting an Array into Two Equal Sum Subarrays

public class SplitArrayEqualSum {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 5, 2};
int leftSum = 0, rightSum = 0;

for (int num : arr) rightSum += num;

boolean canSplit = false;

for (inti=0; i <arr.length; i++) {
leftSum +=arrJi];
rightSum -= arr[i];

if (leftSum == rightSum) {
canSplit = true;
System.out.printin("Array can be split at index: " + i);
break;

¥
¥

if ("canSplit) {
System.out.printIn("Array cannot be split into equal sum
subarrays.");

¥
¥
¥
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