
Java 40 programs on  arrays 
 

1. Finding the Largest Element in an Array 

public class LargestElement { 

    public static void main(String[] args) { 

        int[] arr = {5, 3, 9, 2, 8}; 

        int max = arr[0]; 

        for (int num : arr) { 

            if (num > max) { 

                max = num; 

            } 

        } 

        System.out.println("Largest element: " + max); 

    } 

} 

2. Finding the Smallest Element in an Array 

public class SmallestElement { 

    public static void main(String[] args) { 

        int[] arr = {4, 1, 6, 3, 7}; 

        int min = arr[0]; 

        for (int num : arr) { 

            if (num < min) { 

                min = num; 

            } 

        } 

        System.out.println("Smallest element: " + min); 

    } 

} 

3. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - 1 - i]; 

            arr[arr.length - 1 - i] = temp; 

        } 

        System.out.print("Reversed array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

4. Sorting an Array Using Bubble Sort 



public class BubbleSort { 

    public static void main(String[] args) { 

        int[] arr = {5, 1, 4, 2, 8}; 

        for (int i = 0; i < arr.length - 1; i++) { 

            for (int j = 0; j < arr.length - 1 - i; j++) { 

                if (arr[j] > arr[j + 1]) { 

                    int temp = arr[j]; 

                    arr[j] = arr[j + 1]; 

                    arr[j + 1] = temp; 

                } 

            } 

        } 

        System.out.print("Sorted array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

5. Counting Even and Odd Elements in an Array 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 

                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

6. Merging Two Arrays 

public class MergeArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5}; 

        int[] arr2 = {2, 4, 6}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        for (int i = 0; i < arr1.length; i++) { 

            merged[i] = arr1[i]; 

        } 

        for (int i = 0; i < arr2.length; i++) { 

            merged[arr1.length + i] = arr2[i]; 



        } 

 

        System.out.print("Merged array: "); 

        for (int num : merged) { 

            System.out.print(num + " "); 

        } 

    } 

} 

7. Finding the Sum of All Elements in an Array 

public class ArraySum { 

    public static void main(String[] args) { 

        int[] arr = {5, 10, 15, 20, 25}; 

        int sum = 0; 

        for (int num : arr) { 

            sum += num; 

        } 

        System.out.println("Sum of all elements: " + sum); 

    } 

} 

8. Copying an Array 

public class CopyArray { 

    public static void main(String[] args) { 

        int[] original = {1, 2, 3, 4, 5}; 

        int[] copy = new int[original.length]; 

 

        for (int i = 0; i < original.length; i++) { 

            copy[i] = original[i]; 

        } 

 

        System.out.print("Copied array: "); 

        for (int num : copy) { 

            System.out.print(num + " "); 

        } 

    } 

} 

9. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        Arrays.sort(arr); 

        int[] temp = new int[arr.length]; 

        int j = 0; 

 

        for (int i = 0; i < arr.length - 1; i++) { 



            if (arr[i] != arr[i + 1]) { 

                temp[j++] = arr[i]; 

            } 

        } 

        temp[j++] = arr[arr.length - 1]; 

 

        int[] uniqueArr = Arrays.copyOf(temp, j); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

10. Binary Search in a Sorted Array 

import java.util.Arrays; 

 

public class BinarySearch { 

    public static void main(String[] args) { 

        int[] arr = {3, 1, 4, 2, 5}; 

        Arrays.sort(arr);  // Array must be sorted for binary search 

        int target = 4; 

        int result = binarySearch(arr, target); 

 

        if (result == -1) { 

            System.out.println("Element not found."); 

        } else { 

            System.out.println("Element found at index: " + result); 

        } 

    } 

 

    public static int binarySearch(int[] arr, int target) { 

        int left = 0, right = arr.length - 1; 

        while (left <= right) { 

            int mid = left + (right - left) / 2; 

            if (arr[mid] == target) { 

                return mid; 

            } 

            if (arr[mid] < target) { 

                left = mid + 1; 

            } else { 

                right = mid - 1; 

            } 

        } 

        return -1; 

    } 

} 



11. Finding the Largest Element in an Array 

public class LargestElement { 

    public static void main(String[] args) { 

        int[] arr = {5, 3, 9, 2, 8}; 

        int max = arr[0]; 

        for (int num : arr) { 

            if (num > max) { 

                max = num; 

            } 

        } 

        System.out.println("Largest element: " + max); 

    } 

} 

12. Finding the Smallest Element in an Array 

public class SmallestElement { 

    public static void main(String[] args) { 

        int[] arr = {4, 1, 6, 3, 7}; 

        int min = arr[0]; 

        for (int num : arr) { 

            if (num < min) { 

                min = num; 

            } 

        } 

        System.out.println("Smallest element: " + min); 

    } 

} 

13. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - 1 - i]; 

            arr[arr.length - 1 - i] = temp; 

        } 

        System.out.print("Reversed array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

14. Sorting an Array Using Bubble Sort 

public class BubbleSort { 

    public static void main(String[] args) { 

        int[] arr = {5, 1, 4, 2, 8}; 

        for (int i = 0; i < arr.length - 1; i++) { 



            for (int j = 0; j < arr.length - 1 - i; j++) { 

                if (arr[j] > arr[j + 1]) { 

                    int temp = arr[j]; 

                    arr[j] = arr[j + 1]; 

                    arr[j + 1] = temp; 

                } 

            } 

        } 

        System.out.print("Sorted array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

15. Counting Even and Odd Elements in an Array 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 

                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

16. Merging Two Arrays 

public class MergeArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5}; 

        int[] arr2 = {2, 4, 6}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        for (int i = 0; i < arr1.length; i++) { 

            merged[i] = arr1[i]; 

        } 

        for (int i = 0; i < arr2.length; i++) { 

            merged[arr1.length + i] = arr2[i]; 

        } 

 

        System.out.print("Merged array: "); 

        for (int num : merged) { 



            System.out.print(num + " "); 

        } 

    } 

} 

17. Finding the Sum of All Elements in an Array 

public class ArraySum { 

    public static void main(String[] args) { 

        int[] arr = {5, 10, 15, 20, 25}; 

        int sum = 0; 

        for (int num : arr) { 

            sum += num; 

        } 

        System.out.println("Sum of all elements: " + sum); 

    } 

} 

18. Copying an Array 

public class CopyArray { 

    public static void main(String[] args) { 

        int[] original = {1, 2, 3, 4, 5}; 

        int[] copy = new int[original.length]; 

 

        for (int i = 0; i < original.length; i++) { 

            copy[i] = original[i]; 

        } 

 

        System.out.print("Copied array: "); 

        for (int num : copy) { 

            System.out.print(num + " "); 

        } 

    } 

} 

19. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        Arrays.sort(arr); 

        int[] temp = new int[arr.length]; 

        int j = 0; 

 

        for (int i = 0; i < arr.length - 1; i++) { 

            if (arr[i] != arr[i + 1]) { 

                temp[j++] = arr[i]; 

            } 

        } 



        temp[j++] = arr[arr.length - 1]; 

 

        int[] uniqueArr = Arrays.copyOf(temp, j); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

20. Binary Search in a Sorted Array 

import java.util.Arrays; 

 

public class BinarySearch { 

    public static void main(String[] args) { 

        int[] arr = {3, 1, 4, 2, 5}; 

        Arrays.sort(arr);  // Array must be sorted for binary search 

        int target = 4; 

        int result = binarySearch(arr, target); 

 

        if (result == -1) { 

            System.out.println("Element not found."); 

        } else { 

            System.out.println("Element found at index: " + result); 

        } 

    } 

 

    public static int binarySearch(int[] arr, int target) { 

        int left = 0, right = arr.length - 1; 

        while (left <= right) { 

            int mid = left + (right - left) / 2; 

            if (arr[mid] == target) { 

                return mid; 

            } 

            if (arr[mid] < target) { 

                left = mid + 1; 

            } else { 

                right = mid - 1; 

            } 

        } 

        return -1; 

    } 

} 

21. Finding the Second Largest Element in an Array 

 

public class SecondLargest { 

    public static void main(String[] args) { 



        int[] arr = {4, 7, 1, 9, 3}; 

        int largest = Integer.MIN_VALUE, secondLargest = 

Integer.MIN_VALUE; 

 

        for (int num : arr) { 

            if (num > largest) { 

                secondLargest = largest; 

                largest = num; 

            } else if (num > secondLargest && num != largest) { 

                secondLargest = num; 

            } 

        } 

        System.out.println("Second largest element: " + 

secondLargest); 

    } 

} 

22. Inserting an Element at a Specific Position in an Array 

 

public class InsertElement { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int element = 10; 

        int position = 3; 

         

        int[] newArr = new int[arr.length + 1]; 

         

        for (int i = 0, j = 0; i < newArr.length; i++) { 

            if (i == position) { 

                newArr[i] = element; 

            } else { 

                newArr[i] = arr[j++]; 

            } 

        } 

 

        System.out.print("Array after insertion: "); 

        for (int num : newArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

23. Deleting an Element from a Specific Position in an Array 

 

public class DeleteElement { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int position = 2; 



 

        int[] newArr = new int[arr.length - 1]; 

         

        for (int i = 0, j = 0; i < arr.length; i++) { 

            if (i == position) continue; 

            newArr[j++] = arr[i]; 

        } 

 

        System.out.print("Array after deletion: "); 

        for (int num : newArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

24. Finding the Frequency of Each Element in an Array 

 

public class FrequencyCount { 

    public static void main(String[] args) { 

        int[] arr = {2, 3, 2, 4, 5, 3, 5}; 

        boolean[] visited = new boolean[arr.length]; 

 

        for (int i = 0; i < arr.length; i++) { 

            if (!visited[i]) { 

                int count = 1; 

                for (int j = i + 1; j < arr.length; j++) { 

                    if (arr[i] == arr[j]) { 

                        visited[j] = true; 

                        count++; 

                    } 

                } 

                System.out.println(arr[i] + " occurs " + count + " times"); 

            } 

        } 

    } 

} 

25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix) 

 

public class DiagonalSum { 

    public static void main(String[] args) { 

        int[][] matrix = { 

            {1, 2, 3}, 

            {4, 5, 6}, 

            {7, 8, 9} 

        }; 

        int sum = 0; 

 



        for (int i = 0; i < matrix.length; i++) { 

            sum += matrix[i][i]; 

        } 

        System.out.println("Sum of diagonal elements: " + sum); 

    } 

} 

26. Transposing a Matrix 

 

public class MatrixTranspose { 

    public static void main(String[] args) { 

        int[][] matrix = { 

            {1, 2, 3}, 

            {4, 5, 6} 

        }; 

 

        int[][] transpose = new int[matrix[0].length][matrix.length]; 

 

        for (int i = 0; i < matrix.length; i++) { 

            for (int j = 0; j < matrix[0].length; j++) { 

                transpose[j][i] = matrix[i][j]; 

            } 

        } 

 

        System.out.println("Transpose of the matrix:"); 

        for (int[] row : transpose) { 

            for (int val : row) { 

                System.out.print(val + " "); 

            } 

            System.out.println(); 

        } 

    } 

} 

27. Shifting Elements in an Array to the Left 

 

public class LeftShiftArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int shiftCount = 2; 

 

        for (int i = 0; i < shiftCount; i++) { 

            int first = arr[0]; 

            for (int j = 0; j < arr.length - 1; j++) { 

                arr[j] = arr[j + 1]; 

            } 

            arr[arr.length - 1] = first; 

        } 



 

        System.out.print("Array after left shift: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

28. Rotating Elements in an Array to the Right 

 

public class RightRotateArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int rotateCount = 2; 

 

        for (int i = 0; i < rotateCount; i++) { 

            int last = arr[arr.length - 1]; 

            for (int j = arr.length - 1; j > 0; j--) { 

                arr[j] = arr[j - 1]; 

            } 

            arr[0] = last; 

        } 

 

        System.out.print("Array after right rotation: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

29. Finding the Pair of Elements with a Given Sum 

 

public class PairWithSum { 

    public static void main(String[] args) { 

        int[] arr = {1, 4, 5, 2, 3}; 

        int targetSum = 6; 

 

        System.out.println("Pairs with sum " + targetSum + ":"); 

        for (int i = 0; i < arr.length; i++) { 

            for (int j = i + 1; j < arr.length; j++) { 

                if (arr[i] + arr[j] == targetSum) { 

                    System.out.println("(" + arr[i] + ", " + arr[j] + ")"); 

                } 

            } 

        } 

    } 

} 

30. Counting Positive, Negative, and Zero Elements in an Array 



 

public class CountPosNegZero { 

    public static void main(String[] args) { 

        int[] arr = {3, -1, 0, -3, 5, 0, -2, 2}; 

        int positiveCount = 0, negativeCount = 0, zeroCount = 0; 

 

        for (int num : arr) { 

            if (num > 0) { 

                positiveCount++; 

            } else if (num < 0) { 

                negativeCount++; 

            } else { 

                zeroCount++; 

            } 

        } 

 

        System.out.println("Positive count: " + positiveCount); 

        System.out.println("Negative count: " + negativeCount); 

        System.out.println("Zero count: " + zeroCount); 

    } 

} 

 

31. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - i - 1]; 

            arr[arr.length - i - 1] = temp; 

        } 

        System.out.print("Reversed Array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

32. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        int[] uniqueArr = Arrays.stream(arr).distinct().toArray(); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 



            System.out.print(num + " "); 

        } 

    } 

} 

 

33. Finding the Intersection of Two Arrays 

import java.util.HashSet; 

 

public class ArrayIntersection { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 2, 3, 4, 5}; 

        int[] arr2 = {3, 4, 5, 6, 7}; 

        HashSet<Integer> set = new HashSet<>(); 

 

        for (int i : arr1) { 

            set.add(i); 

        } 

         

        System.out.print("Intersection: "); 

        for (int i : arr2) { 

            if (set.contains(i)) { 

                System.out.print(i + " "); 

            } 

        } 

    } 

} 

34. Merging Two Sorted Arrays 

import java.util.Arrays; 

 

public class MergeSortedArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5, 7}; 

        int[] arr2 = {2, 4, 6, 8}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        int i = 0, j = 0, k = 0; 

        while (i < arr1.length && j < arr2.length) { 

            merged[k++] = (arr1[i] < arr2[j]) ? arr1[i++] : arr2[j++]; 

        } 

        while (i < arr1.length) merged[k++] = arr1[i++]; 

        while (j < arr2.length) merged[k++] = arr2[j++]; 

 

        System.out.print("Merged Array: "); 

        for (int num : merged) { 

            System.out.print(num + " "); 

        } 



    } 

} 

35. Finding the Maximum Product of Two Elements 

public class MaxProduct { 

    public static void main(String[] args) { 

        int[] arr = {1, 20, 3, 4, 5}; 

        int max1 = Integer.MIN_VALUE, max2 = 

Integer.MIN_VALUE; 

 

        for (int num : arr) { 

            if (num > max1) { 

                max2 = max1; 

                max1 = num; 

            } else if (num > max2) { 

                max2 = num; 

            } 

        } 

        System.out.println("Maximum product of two elements: " + 

(max1 * max2)); 

    } 

} 

 

36. Finding Missing Number in a Sequence (1 to N) 

public class MissingNumber { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 4, 5, 6}; // Missing 3 

        int n = arr.length + 1; 

        int totalSum = n * (n + 1) / 2; 

 

        for (int num : arr) { 

            totalSum -= num; 

        } 

        System.out.println("Missing number: " + totalSum); 

    } 

} 

 

37. Counting the Number of Even and Odd Elements 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 



                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

 

38. Finding the Longest Sequence of Consecutive Numbers 

import java.util.HashSet; 

 

public class LongestConsecutiveSequence { 

    public static void main(String[] args) { 

        int[] arr = {1, 9, 3, 10, 4, 20, 2}; 

        HashSet<Integer> set = new HashSet<>(); 

        int maxLength = 0; 

 

        for (int num : arr) set.add(num); 

 

        for (int num : arr) { 

            if (!set.contains(num - 1)) { 

                int currentNum = num; 

                int length = 1; 

                while (set.contains(currentNum + 1)) { 

                    currentNum++; 

                    length++; 

                } 

                maxLength = Math.max(maxLength, length); 

            } 

        } 

        System.out.println("Length of longest consecutive sequence: 

" + maxLength); 

    } 

} 

 

39. Checking if an Array is a Palindrome 

public class PalindromeArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 2, 1}; 

        boolean isPalindrome = true; 

 

        for (int i = 0; i < arr.length / 2; i++) { 

            if (arr[i] != arr[arr.length - i - 1]) { 

                isPalindrome = false; 

                break; 

            } 



        } 

        System.out.println("Is array a palindrome? " + isPalindrome); 

    } 

} 

40. Splitting an Array into Two Equal Sum Subarrays 

public class SplitArrayEqualSum { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 5, 2}; 

        int leftSum = 0, rightSum = 0; 

         

        for (int num : arr) rightSum += num; 

         

        boolean canSplit = false; 

        for (int i = 0; i < arr.length; i++) { 

            leftSum += arr[i]; 

            rightSum -= arr[i]; 

             

            if (leftSum == rightSum) { 

                canSplit = true; 

                System.out.println("Array can be split at index: " + i); 

                break; 

            } 

        } 

         

        if (!canSplit) { 

            System.out.println("Array cannot be split into equal sum 

subarrays."); 

        } 

    } 

} 

 


	1. Finding the Largest Element in an Array
	2. Finding the Smallest Element in an Array
	3. Reversing an Array
	4. Sorting an Array Using Bubble Sort
	5. Counting Even and Odd Elements in an Array
	6. Merging Two Arrays
	7. Finding the Sum of All Elements in an Array
	8. Copying an Array
	9. Removing Duplicates from an Array
	10. Binary Search in a Sorted Array
	11. Finding the Largest Element in an Array
	12. Finding the Smallest Element in an Array
	13. Reversing an Array
	14. Sorting an Array Using Bubble Sort
	15. Counting Even and Odd Elements in an Array
	16. Merging Two Arrays
	17. Finding the Sum of All Elements in an Array
	18. Copying an Array
	19. Removing Duplicates from an Array
	20. Binary Search in a Sorted Array
	21. Finding the Second Largest Element in an Array
	22. Inserting an Element at a Specific Position in an Array
	23. Deleting an Element from a Specific Position in an Array
	24. Finding the Frequency of Each Element in an Array
	25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix)
	26. Transposing a Matrix
	27. Shifting Elements in an Array to the Left
	28. Rotating Elements in an Array to the Right
	29. Finding the Pair of Elements with a Given Sum
	30. Counting Positive, Negative, and Zero Elements in an Array

