
Java 40 programs on  arrays 
 

1. Finding the Largest Element in an Array 

public class LargestElement { 

    public static void main(String[] args) { 

        int[] arr = {5, 3, 9, 2, 8}; 

        int max = arr[0]; 

        for (int num : arr) { 

            if (num > max) { 

                max = num; 

            } 

        } 

        System.out.println("Largest element: " + max); 

    } 

} 

2. Finding the Smallest Element in an Array 

public class SmallestElement { 

    public static void main(String[] args) { 

        int[] arr = {4, 1, 6, 3, 7}; 

        int min = arr[0]; 

        for (int num : arr) { 

            if (num < min) { 

                min = num; 

            } 

        } 

        System.out.println("Smallest element: " + min); 

    } 

} 

3. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - 1 - i]; 

            arr[arr.length - 1 - i] = temp; 

        } 

        System.out.print("Reversed array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

4. Sorting an Array Using Bubble Sort 



public class BubbleSort { 

    public static void main(String[] args) { 

        int[] arr = {5, 1, 4, 2, 8}; 

        for (int i = 0; i < arr.length - 1; i++) { 

            for (int j = 0; j < arr.length - 1 - i; j++) { 

                if (arr[j] > arr[j + 1]) { 

                    int temp = arr[j]; 

                    arr[j] = arr[j + 1]; 

                    arr[j + 1] = temp; 

                } 

            } 

        } 

        System.out.print("Sorted array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

5. Counting Even and Odd Elements in an Array 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 

                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

6. Merging Two Arrays 

public class MergeArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5}; 

        int[] arr2 = {2, 4, 6}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        for (int i = 0; i < arr1.length; i++) { 

            merged[i] = arr1[i]; 

        } 

        for (int i = 0; i < arr2.length; i++) { 

            merged[arr1.length + i] = arr2[i]; 



        } 

 

        System.out.print("Merged array: "); 

        for (int num : merged) { 

            System.out.print(num + " "); 

        } 

    } 

} 

7. Finding the Sum of All Elements in an Array 

public class ArraySum { 

    public static void main(String[] args) { 

        int[] arr = {5, 10, 15, 20, 25}; 

        int sum = 0; 

        for (int num : arr) { 

            sum += num; 

        } 

        System.out.println("Sum of all elements: " + sum); 

    } 

} 

8. Copying an Array 

public class CopyArray { 

    public static void main(String[] args) { 

        int[] original = {1, 2, 3, 4, 5}; 

        int[] copy = new int[original.length]; 

 

        for (int i = 0; i < original.length; i++) { 

            copy[i] = original[i]; 

        } 

 

        System.out.print("Copied array: "); 

        for (int num : copy) { 

            System.out.print(num + " "); 

        } 

    } 

} 

9. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        Arrays.sort(arr); 

        int[] temp = new int[arr.length]; 

        int j = 0; 

 

        for (int i = 0; i < arr.length - 1; i++) { 



            if (arr[i] != arr[i + 1]) { 

                temp[j++] = arr[i]; 

            } 

        } 

        temp[j++] = arr[arr.length - 1]; 

 

        int[] uniqueArr = Arrays.copyOf(temp, j); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

10. Binary Search in a Sorted Array 

import java.util.Arrays; 

 

public class BinarySearch { 

    public static void main(String[] args) { 

        int[] arr = {3, 1, 4, 2, 5}; 

        Arrays.sort(arr);  // Array must be sorted for binary search 

        int target = 4; 

        int result = binarySearch(arr, target); 

 

        if (result == -1) { 

            System.out.println("Element not found."); 

        } else { 

            System.out.println("Element found at index: " + result); 

        } 

    } 

 

    public static int binarySearch(int[] arr, int target) { 

        int left = 0, right = arr.length - 1; 

        while (left <= right) { 

            int mid = left + (right - left) / 2; 

            if (arr[mid] == target) { 

                return mid; 

            } 

            if (arr[mid] < target) { 

                left = mid + 1; 

            } else { 

                right = mid - 1; 

            } 

        } 

        return -1; 

    } 

} 



11. Finding the Largest Element in an Array 

public class LargestElement { 

    public static void main(String[] args) { 

        int[] arr = {5, 3, 9, 2, 8}; 

        int max = arr[0]; 

        for (int num : arr) { 

            if (num > max) { 

                max = num; 

            } 

        } 

        System.out.println("Largest element: " + max); 

    } 

} 

12. Finding the Smallest Element in an Array 

public class SmallestElement { 

    public static void main(String[] args) { 

        int[] arr = {4, 1, 6, 3, 7}; 

        int min = arr[0]; 

        for (int num : arr) { 

            if (num < min) { 

                min = num; 

            } 

        } 

        System.out.println("Smallest element: " + min); 

    } 

} 

13. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - 1 - i]; 

            arr[arr.length - 1 - i] = temp; 

        } 

        System.out.print("Reversed array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

14. Sorting an Array Using Bubble Sort 

public class BubbleSort { 

    public static void main(String[] args) { 

        int[] arr = {5, 1, 4, 2, 8}; 

        for (int i = 0; i < arr.length - 1; i++) { 



            for (int j = 0; j < arr.length - 1 - i; j++) { 

                if (arr[j] > arr[j + 1]) { 

                    int temp = arr[j]; 

                    arr[j] = arr[j + 1]; 

                    arr[j + 1] = temp; 

                } 

            } 

        } 

        System.out.print("Sorted array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

15. Counting Even and Odd Elements in an Array 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 

                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

16. Merging Two Arrays 

public class MergeArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5}; 

        int[] arr2 = {2, 4, 6}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        for (int i = 0; i < arr1.length; i++) { 

            merged[i] = arr1[i]; 

        } 

        for (int i = 0; i < arr2.length; i++) { 

            merged[arr1.length + i] = arr2[i]; 

        } 

 

        System.out.print("Merged array: "); 

        for (int num : merged) { 



            System.out.print(num + " "); 

        } 

    } 

} 

17. Finding the Sum of All Elements in an Array 

public class ArraySum { 

    public static void main(String[] args) { 

        int[] arr = {5, 10, 15, 20, 25}; 

        int sum = 0; 

        for (int num : arr) { 

            sum += num; 

        } 

        System.out.println("Sum of all elements: " + sum); 

    } 

} 

18. Copying an Array 

public class CopyArray { 

    public static void main(String[] args) { 

        int[] original = {1, 2, 3, 4, 5}; 

        int[] copy = new int[original.length]; 

 

        for (int i = 0; i < original.length; i++) { 

            copy[i] = original[i]; 

        } 

 

        System.out.print("Copied array: "); 

        for (int num : copy) { 

            System.out.print(num + " "); 

        } 

    } 

} 

19. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        Arrays.sort(arr); 

        int[] temp = new int[arr.length]; 

        int j = 0; 

 

        for (int i = 0; i < arr.length - 1; i++) { 

            if (arr[i] != arr[i + 1]) { 

                temp[j++] = arr[i]; 

            } 

        } 



        temp[j++] = arr[arr.length - 1]; 

 

        int[] uniqueArr = Arrays.copyOf(temp, j); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

20. Binary Search in a Sorted Array 

import java.util.Arrays; 

 

public class BinarySearch { 

    public static void main(String[] args) { 

        int[] arr = {3, 1, 4, 2, 5}; 

        Arrays.sort(arr);  // Array must be sorted for binary search 

        int target = 4; 

        int result = binarySearch(arr, target); 

 

        if (result == -1) { 

            System.out.println("Element not found."); 

        } else { 

            System.out.println("Element found at index: " + result); 

        } 

    } 

 

    public static int binarySearch(int[] arr, int target) { 

        int left = 0, right = arr.length - 1; 

        while (left <= right) { 

            int mid = left + (right - left) / 2; 

            if (arr[mid] == target) { 

                return mid; 

            } 

            if (arr[mid] < target) { 

                left = mid + 1; 

            } else { 

                right = mid - 1; 

            } 

        } 

        return -1; 

    } 

} 

21. Finding the Second Largest Element in an Array 

 

public class SecondLargest { 

    public static void main(String[] args) { 



        int[] arr = {4, 7, 1, 9, 3}; 

        int largest = Integer.MIN_VALUE, secondLargest = 

Integer.MIN_VALUE; 

 

        for (int num : arr) { 

            if (num > largest) { 

                secondLargest = largest; 

                largest = num; 

            } else if (num > secondLargest && num != largest) { 

                secondLargest = num; 

            } 

        } 

        System.out.println("Second largest element: " + 

secondLargest); 

    } 

} 

22. Inserting an Element at a Specific Position in an Array 

 

public class InsertElement { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int element = 10; 

        int position = 3; 

         

        int[] newArr = new int[arr.length + 1]; 

         

        for (int i = 0, j = 0; i < newArr.length; i++) { 

            if (i == position) { 

                newArr[i] = element; 

            } else { 

                newArr[i] = arr[j++]; 

            } 

        } 

 

        System.out.print("Array after insertion: "); 

        for (int num : newArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

23. Deleting an Element from a Specific Position in an Array 

 

public class DeleteElement { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int position = 2; 



 

        int[] newArr = new int[arr.length - 1]; 

         

        for (int i = 0, j = 0; i < arr.length; i++) { 

            if (i == position) continue; 

            newArr[j++] = arr[i]; 

        } 

 

        System.out.print("Array after deletion: "); 

        for (int num : newArr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

24. Finding the Frequency of Each Element in an Array 

 

public class FrequencyCount { 

    public static void main(String[] args) { 

        int[] arr = {2, 3, 2, 4, 5, 3, 5}; 

        boolean[] visited = new boolean[arr.length]; 

 

        for (int i = 0; i < arr.length; i++) { 

            if (!visited[i]) { 

                int count = 1; 

                for (int j = i + 1; j < arr.length; j++) { 

                    if (arr[i] == arr[j]) { 

                        visited[j] = true; 

                        count++; 

                    } 

                } 

                System.out.println(arr[i] + " occurs " + count + " times"); 

            } 

        } 

    } 

} 

25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix) 

 

public class DiagonalSum { 

    public static void main(String[] args) { 

        int[][] matrix = { 

            {1, 2, 3}, 

            {4, 5, 6}, 

            {7, 8, 9} 

        }; 

        int sum = 0; 

 



        for (int i = 0; i < matrix.length; i++) { 

            sum += matrix[i][i]; 

        } 

        System.out.println("Sum of diagonal elements: " + sum); 

    } 

} 

26. Transposing a Matrix 

 

public class MatrixTranspose { 

    public static void main(String[] args) { 

        int[][] matrix = { 

            {1, 2, 3}, 

            {4, 5, 6} 

        }; 

 

        int[][] transpose = new int[matrix[0].length][matrix.length]; 

 

        for (int i = 0; i < matrix.length; i++) { 

            for (int j = 0; j < matrix[0].length; j++) { 

                transpose[j][i] = matrix[i][j]; 

            } 

        } 

 

        System.out.println("Transpose of the matrix:"); 

        for (int[] row : transpose) { 

            for (int val : row) { 

                System.out.print(val + " "); 

            } 

            System.out.println(); 

        } 

    } 

} 

27. Shifting Elements in an Array to the Left 

 

public class LeftShiftArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int shiftCount = 2; 

 

        for (int i = 0; i < shiftCount; i++) { 

            int first = arr[0]; 

            for (int j = 0; j < arr.length - 1; j++) { 

                arr[j] = arr[j + 1]; 

            } 

            arr[arr.length - 1] = first; 

        } 



 

        System.out.print("Array after left shift: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

28. Rotating Elements in an Array to the Right 

 

public class RightRotateArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        int rotateCount = 2; 

 

        for (int i = 0; i < rotateCount; i++) { 

            int last = arr[arr.length - 1]; 

            for (int j = arr.length - 1; j > 0; j--) { 

                arr[j] = arr[j - 1]; 

            } 

            arr[0] = last; 

        } 

 

        System.out.print("Array after right rotation: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

29. Finding the Pair of Elements with a Given Sum 

 

public class PairWithSum { 

    public static void main(String[] args) { 

        int[] arr = {1, 4, 5, 2, 3}; 

        int targetSum = 6; 

 

        System.out.println("Pairs with sum " + targetSum + ":"); 

        for (int i = 0; i < arr.length; i++) { 

            for (int j = i + 1; j < arr.length; j++) { 

                if (arr[i] + arr[j] == targetSum) { 

                    System.out.println("(" + arr[i] + ", " + arr[j] + ")"); 

                } 

            } 

        } 

    } 

} 

30. Counting Positive, Negative, and Zero Elements in an Array 



 

public class CountPosNegZero { 

    public static void main(String[] args) { 

        int[] arr = {3, -1, 0, -3, 5, 0, -2, 2}; 

        int positiveCount = 0, negativeCount = 0, zeroCount = 0; 

 

        for (int num : arr) { 

            if (num > 0) { 

                positiveCount++; 

            } else if (num < 0) { 

                negativeCount++; 

            } else { 

                zeroCount++; 

            } 

        } 

 

        System.out.println("Positive count: " + positiveCount); 

        System.out.println("Negative count: " + negativeCount); 

        System.out.println("Zero count: " + zeroCount); 

    } 

} 

 

31. Reversing an Array 

public class ReverseArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5}; 

        for (int i = 0; i < arr.length / 2; i++) { 

            int temp = arr[i]; 

            arr[i] = arr[arr.length - i - 1]; 

            arr[arr.length - i - 1] = temp; 

        } 

        System.out.print("Reversed Array: "); 

        for (int num : arr) { 

            System.out.print(num + " "); 

        } 

    } 

} 

32. Removing Duplicates from an Array 

import java.util.Arrays; 

 

public class RemoveDuplicates { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 2, 3, 4, 4, 5}; 

        int[] uniqueArr = Arrays.stream(arr).distinct().toArray(); 

        System.out.print("Array after removing duplicates: "); 

        for (int num : uniqueArr) { 



            System.out.print(num + " "); 

        } 

    } 

} 

 

33. Finding the Intersection of Two Arrays 

import java.util.HashSet; 

 

public class ArrayIntersection { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 2, 3, 4, 5}; 

        int[] arr2 = {3, 4, 5, 6, 7}; 

        HashSet<Integer> set = new HashSet<>(); 

 

        for (int i : arr1) { 

            set.add(i); 

        } 

         

        System.out.print("Intersection: "); 

        for (int i : arr2) { 

            if (set.contains(i)) { 

                System.out.print(i + " "); 

            } 

        } 

    } 

} 

34. Merging Two Sorted Arrays 

import java.util.Arrays; 

 

public class MergeSortedArrays { 

    public static void main(String[] args) { 

        int[] arr1 = {1, 3, 5, 7}; 

        int[] arr2 = {2, 4, 6, 8}; 

        int[] merged = new int[arr1.length + arr2.length]; 

 

        int i = 0, j = 0, k = 0; 

        while (i < arr1.length && j < arr2.length) { 

            merged[k++] = (arr1[i] < arr2[j]) ? arr1[i++] : arr2[j++]; 

        } 

        while (i < arr1.length) merged[k++] = arr1[i++]; 

        while (j < arr2.length) merged[k++] = arr2[j++]; 

 

        System.out.print("Merged Array: "); 

        for (int num : merged) { 

            System.out.print(num + " "); 

        } 



    } 

} 

35. Finding the Maximum Product of Two Elements 

public class MaxProduct { 

    public static void main(String[] args) { 

        int[] arr = {1, 20, 3, 4, 5}; 

        int max1 = Integer.MIN_VALUE, max2 = 

Integer.MIN_VALUE; 

 

        for (int num : arr) { 

            if (num > max1) { 

                max2 = max1; 

                max1 = num; 

            } else if (num > max2) { 

                max2 = num; 

            } 

        } 

        System.out.println("Maximum product of two elements: " + 

(max1 * max2)); 

    } 

} 

 

36. Finding Missing Number in a Sequence (1 to N) 

public class MissingNumber { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 4, 5, 6}; // Missing 3 

        int n = arr.length + 1; 

        int totalSum = n * (n + 1) / 2; 

 

        for (int num : arr) { 

            totalSum -= num; 

        } 

        System.out.println("Missing number: " + totalSum); 

    } 

} 

 

37. Counting the Number of Even and Odd Elements 

public class CountEvenOdd { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 4, 5, 6}; 

        int evenCount = 0, oddCount = 0; 

 

        for (int num : arr) { 

            if (num % 2 == 0) { 

                evenCount++; 

            } else { 



                oddCount++; 

            } 

        } 

        System.out.println("Even count: " + evenCount); 

        System.out.println("Odd count: " + oddCount); 

    } 

} 

 

38. Finding the Longest Sequence of Consecutive Numbers 

import java.util.HashSet; 

 

public class LongestConsecutiveSequence { 

    public static void main(String[] args) { 

        int[] arr = {1, 9, 3, 10, 4, 20, 2}; 

        HashSet<Integer> set = new HashSet<>(); 

        int maxLength = 0; 

 

        for (int num : arr) set.add(num); 

 

        for (int num : arr) { 

            if (!set.contains(num - 1)) { 

                int currentNum = num; 

                int length = 1; 

                while (set.contains(currentNum + 1)) { 

                    currentNum++; 

                    length++; 

                } 

                maxLength = Math.max(maxLength, length); 

            } 

        } 

        System.out.println("Length of longest consecutive sequence: 

" + maxLength); 

    } 

} 

 

39. Checking if an Array is a Palindrome 

public class PalindromeArray { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 2, 1}; 

        boolean isPalindrome = true; 

 

        for (int i = 0; i < arr.length / 2; i++) { 

            if (arr[i] != arr[arr.length - i - 1]) { 

                isPalindrome = false; 

                break; 

            } 



        } 

        System.out.println("Is array a palindrome? " + isPalindrome); 

    } 

} 

40. Splitting an Array into Two Equal Sum Subarrays 

public class SplitArrayEqualSum { 

    public static void main(String[] args) { 

        int[] arr = {1, 2, 3, 5, 2}; 

        int leftSum = 0, rightSum = 0; 

         

        for (int num : arr) rightSum += num; 

         

        boolean canSplit = false; 

        for (int i = 0; i < arr.length; i++) { 

            leftSum += arr[i]; 

            rightSum -= arr[i]; 

             

            if (leftSum == rightSum) { 

                canSplit = true; 

                System.out.println("Array can be split at index: " + i); 

                break; 

            } 

        } 

         

        if (!canSplit) { 

            System.out.println("Array cannot be split into equal sum 

subarrays."); 

        } 

    } 

} 
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