FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

Java 40 programs on_arrays

1. Finding the Largest Element in an Array
public class LargestElement {
public static void main(String[] args) {
int[] arr={5, 3, 9, 2, 8};
int max = arr[0];
for (int num : arr) {
if (num > max) {
max = num;
}
}
System.out.printIn("Largest element: * + max);
}
}

2. Finding the Smallest Element in an Array
public class SmallestElement {
public static void main(String[] args) {
int[]arr={4, 1,6, 3, 7};
int min = arr[0];
for (int num : arr) {
if (num < min) {
min = num;
}
}
System.out.printIn(*Smallest element: " + min);
}
}

public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arrli];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;

}

System.out.print(“"Reversed array: ");

for (int num : arr) {
System.out.print(num + " ");

}

¥

}
4. Sorting an Array Using Bubble Sort

3. Reversing an Array

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

public class BubbleSort {
public static void main(String[] args) {
int[] arr = {5, 1, 4, 2, 8};
for (inti=0;i<arr.length - 1; i++) {
for (intj=0;j<arrlength-1-1i; j++) {
if (arr[j] >arr[j +1]) {
int temp = arr[j];
arr[j] = arr[j + 1J;
arr[j + 1] = temp;
}
}

¥
System.out.print("Sorted array: *);

for (int num : arr) {
System.out.print(num + " "');

¥
¥
¥

5. Counting Even and Odd Elements in an Array
public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;
for (int num : arr) {
if (hum% 2==0){
evenCount++;
}else {
oddCount++;
}
}

System.out.printin("Even count: " + evenCount);
System.out.printIn(*Odd count: " + oddCount);

¥
¥

public class MergeArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5};
int[] arr2 = {2, 4, 6};
int[] merged = new int[arrl.length + arr2.length];

6. Merging Two Arrays

for (inti =0; i <arrl.length; i++) {
merged[i] = arrl[i];

}

for (int1=0; i <arr2.length; i++) {
merged[arrl.length + i] = arr2[i];

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

}

System.out.print("Merged array: ");
for (int num : merged) {
System.out.print(num + " *);

¥
¥

¥
7. Finding the Sum of All Elements in an Array

public class ArraySum {
public static void main(String[] args) {
int[] arr = {5, 10, 15, 20, 25};
int sum = 0;
for (int num : arr) {
sum += num;
}
System.out.printIn("Sum of all elements: " + sum);
}
}

public class CopyArray {
public static void main(String[] args) {
int[] original = {1, 2, 3, 4, 5};
int[] copy = new int[original.length];

8. Copying an Array

for (inti = 0; i < original.length; i++) {
copy[i] = originalli];

System.out.print("Copied array: ");
for (int num : copy) {
System.out.print(num + " );

¥
¥
¥

9. Removing Duplicates from an Array
import java.util. Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[]arr={1, 2, 2, 3, 4, 4, 5};
Arrays.sort(arr);
int[] temp = new int[arr.length];
intj=0;

for (inti=0;i<arr.length - 1; i++) {

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

if (arr[i] '=arr[i + 1]) {
temp[j++] = arr[i];

temp[j++] = arr[arr.length - 1];

int[] uniqueArr = Arrays.copyOf(temp, j);
System.out.print("Array after removing duplicates: ");
for (int num : uniqueArr) {

System.out.print(num + " *);

¥
¥

}
10. Binary Search in a Sorted Array

import java.util. Arrays;

public class BinarySearch {
public static void main(String[] args) {
int[] arr = {3, 1, 4, 2, 5};
Arrays.sort(arr); // Array must be sorted for binary search
int target = 4;
int result = binarySearch(arr, target);

if (result ==-1) {
System.out.printIn("Element not found.");
}else {
System.out.printin("Element found at index: " + result);
}
}

public static int binarySearch(int[] arr, int target) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
}
if (arr[mid] < target) {
left=mid + 1;
}else {
right =mid - 1;
}
}
return -1;
}
}

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

11. Finding the Largest Element in an Array
public class LargestElement {
public static void main(String[] args) {
int[] arr={5, 3, 9, 2, 8};
int max = arr[0];
for (int num : arr) {
if (num > max) {
max = num;
}
}
System.out.printin(“Largest element: " + max);
}
}

12. Finding the Smallest Element in an Array
public class SmallestElement {
public static void main(String[] args) {
int[Jarr=4{4, 1,6, 3, 7};
int min = arr[0];
for (int num : arr) {
if (num < min) {
min = num;
}
}
System.out.printin("Smallest element: " + min);
}
}

public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arrli];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;

}

System.out.print(“Reversed array: ");

for (int num : arr) {
System.out.print(num + " ");

¥
¥

}
14. Sorting an Array Using Bubble Sort

public class BubbleSort {
public static void main(String[] args) {
int[]arr={5, 1, 4, 2, 8};
for (inti=0;i<arr.length - 1; i++) {

13. Reversing an Array

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

for (intj=0;j<arrlength-1-1i; j++) {
if (arrj] >arrfj + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1J;
arr[j + 1] = temp;
}
}

}
System.out.print("Sorted array: ");

for (int num : arr) {
System.out.print(num + " );

¥
¥

}
15. Counting Even and Odd Elements in an Array

public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;
for (int num : arr) {
if (hum% 2==0){
evenCount++;
}else {
oddCount++;
}
}

System.out.printIn("Even count: " + evenCount);
System.out.printIn("Odd count: " + oddCount);

¥
¥

public class MergeArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5};
int[] arr2 = {2, 4, 6};
int[] merged = new int[arrl.length + arr2.lengthl];

16. Merging Two Arrays

for (int i =0; i <arrl.length; i++) {
merged[i] = arrl[i];

}

for (inti=0; i <arr2.length; i++) {
merged[arrl.length + i] = arr2[i];

}

System.out.print("Merged array: ");
for (int num : merged) {

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

System.out.print(num + " ");

¥
¥

¥
17. Finding the Sum of All Elements in an Array

public class ArraySum {
public static void main(String[] args) {
int[] arr = {5, 10, 15, 20, 25};
int sum = 0;
for (int num : arr) {
sum += num;
}
System.out.printIn("Sum of all elements: " + sum);
}
}

public class CopyArray {
public static void main(String[] args) {
int[] original = {1, 2, 3, 4, 5};
int[] copy = new int[original.length];

18. Copying an Array

for (inti = 0; i < original.length; i++) {
copy[i] = originalli];
}

System.out.print("Copied array: ");
for (int num : copy) {
System.out.print(num + " );

¥
¥
¥

19. Removing Duplicates from an Array
import java.util. Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[] arr={1, 2, 2, 3, 4, 4, 5};
Arrays.sort(arr);
int[] temp = new int[arr.length];
intj=0;

for (inti = 0; i <arr.length - 1; i++) {
if (arr[i] '=arr[i + 1]) {
temp[j++] = arr[i];

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

temp[j++] = arr[arr.length - 1];

int[] uniqueArr = Arrays.copyOf(temp, j);
System.out.print("Array after removing duplicates: ");
for (int num : uniqueArr) {

System.out.print(num + " *);

¥
¥

}
20. Binary Search in a Sorted Array

import java.util. Arrays;

public class BinarySearch {
public static void main(String[] args) {
int[] arr = {3, 1, 4, 2, 5};
Arrays.sort(arr); // Array must be sorted for binary search
int target = 4;
int result = binarySearch(arr, target);

if (result ==-1) {
System.out.printin("Element not found.");
}else {
System.out.printin("Element found at index: " + result);
}
}

public static int binarySearch(int[] arr, int target) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
}
if (arr[mid] < target) {
left = mid + 1;
}else {
right = mid - 1;
}
}
return -1;
}

}
21. Finding the Second Largest Element in an Array

public class SecondLargest {
public static void main(String[] args) {

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

int[]arr=4{4,7,1,9, 3};
int largest = Integer. MIN_VALUE, secondLargest =
Integer.MIN_VALUE;

for (int num : arr) {
if (num > largest) {
secondLargest = largest;
largest = num;
} else if (hum > secondLargest && num != largest) {
secondLargest = num;

¥
¥

System.out.printin("Second largest element: " +
secondLargest);

¥
¥

22. Inserting an Element at a Specific Position in an Array

public class InsertElement {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int element = 10;
int position = 3;

int[] newArr = new int[arr.length + 1];

for (inti=0,j=0;i<newArr.length; i++) {
if (i == position) {
newArr[i] = element;
}else {
newArr[i] = arr[j++];
}
}

System.out.print("Array after insertion: ");
for (int num : newAurr) {
System.out.print(num + " ");

¥
¥
¥

23. Deleting an Element from a Specific Position in an Array

public class DeleteElement {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int position = 2;

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

int[] newArr = new int[arr.length - 1];

for (inti=0,j=0;i<arrlength; i++) {
if (i == position) continue;
newArr[j++] = arrl[i];

}

System.out.print("Array after deletion: ");
for (int num : newArr) {
System.out.print(num + " ");

¥
¥

}
24. Finding the Frequency of Each Element in an Array

public class FrequencyCount {
public static void main(String[] args) {
int[] arr =42, 3, 2, 4,5, 3, 5};
boolean[] visited = new boolean[arr.length];

for (inti=0; i <arr.length; i++) {
if (visited[i]) {
int count = 1;
for (intj=i+1;j<arrlength; j++) {
if (arr[i] == arr[j]) {
visited[j] = true;
count++;
}
}
System.out.printin(arr[i] + " occurs " + count + " times");
}
}
}

}
25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix)

public class DiagonalSum {
public static void main(String[] args) {
int[][] matrix = {
{1,2,3},
{4, 5, 6},
{7, 8,9}
3

int sum = 0;

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

for (int i = 0; i < matrix.length; i++) {
sum += matrix[i][i];
}
System.out.printIn("Sum of diagonal elements: " + sum);
}
}

26. Transposing a Matrix

public class MatrixTranspose {
public static void main(String[] args) {
int[][] matrix = {
{1,2,3},
{4,5, 6}
j

int[][] transpose = new int[matrix[0].length][matrix.length];

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
transpose[j][i] = matrix[i][j];

¥

System.out.printin("Transpose of the matrix:");
for (int[] row : transpose) {

for (int val : row) {

System.out.print(val + " ");

}

System.out.printIn();
}

}

}
27. Shifting Elements in an Array to the Left

public class LeftShiftArray {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int shiftCount = 2;

for (int i = 0; i < shiftCount; i++) {
int first = arr[0];
for (intj = 0; j <arr.length - 1; j++) {
arr[j] = arr[j + 1];

arrfarr.length - 1] = first;

¥

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

System.out.print("Array after left shift: ");
for (int num : arr) {
System.out.print(num + " ");

¥
¥

}
28. Rotating Elements in an Array to the Right

public class RightRotateArray {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
int rotateCount = 2;

for (int i = 0; i < rotateCount; i++) {
int last = arr[arr.length - 1];
for (intj = arr.length - 1; j > 0; j--) {
arrf[j] = arr[j - 1];
}
arr[0] = last;
}

System.out.print("Array after right rotation: ");
for (int num : arr) {
System.out.print(num + " ");

¥
¥
¥

29. Finding the Pair of Elements with a Given Sum

public class PairWithSum {
public static void main(String[] args) {
int[] arr = {1, 4, 5, 2, 3};
int targetSum = 6;

System.out.printIn("Pairs with sum " + targetSum + ":");
for (inti =0; i <arr.length; i++) {
for (intj =i+ 1; j <arr.length; j++) {
if (arr[i] + arr[j] == targetSum) {
System.out.printin("(" + arr[i] + ", " + arr[j] +")");
}
}
}
}
}

30. Counting Positive, Negative, and Zero Elements in an Array

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

public class CountPosNegZero {
public static void main(String[] args) {
int[] arr={3,-1,0, -3,5, 0, -2, 2},
int positiveCount = 0, negativeCount = 0, zeroCount = 0;

for (int num : arr) {
if (num >0) {
positiveCount++;
}elseif (num<0) {
negativeCount++;
}else {
zeroCount++;
}
}

System.out.printIn("Positive count: " + positiveCount);
System.out.printIn("Negative count: " + negativeCount);
System.out.printin(“Zero count: " + zeroCount);

31. Reversing an Array
public class ReverseArray {
public static void main(String[] args) {

int[] arr = {1, 2, 3, 4, 5};

for (inti=0;i<arr.length/2; i++) {
int temp = arr[i];
arr[i] = arr[arr.length - i - 1];
arr[arr.length - i - 1] = temp;

}

System.out.print("Reversed Array: ");

for (int num : arr) {
System.out.print(num + " ");

¥
¥
¥

32. Removing Duplicates from an Array
import java.util.Arrays;

public class RemoveDuplicates {
public static void main(String[] args) {
int[]arr={1, 2, 2, 3, 4, 4, 5};
int[] uniqueArr = Arrays.stream(arr).distinct().toArray();
System.out.print("Array after removing duplicates: ");
for (int num : uniqueAurr) {

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

System.out.print(num + " ");

¥
¥
¥

33. Finding the Intersection of Two Arrays
import java.util.HashSet;

public class Arraylntersection {
public static void main(String[] args) {
int[] arrl = {1, 2, 3, 4, 5};
int[] arr2 = {3, 4, 5, 6, 7},
HashSet<Integer> set = new HashSet<>();

for (inti:arrl) {
set.add(i);
}

System.out.print("Intersection: ");
for (inti: arr2) {
if (set.contains(i)) {
System.out.print(i + " ");
}
}
}

}
34. Merging Two Sorted Arrays

import java.util.Arrays;

public class MergeSortedArrays {
public static void main(String[] args) {
int[] arrl = {1, 3, 5, 7};
int[] arr2 = {2, 4, 6, 8};
int[] merged = new int[arrl.length + arr2.length];

inti=0,j:0,k:o;
while (i <arrl.length && j < arr2.length) {
merged[k++] = (arr1[i] < arr2[j]) ? arrd[i++] : arr2[j++];

while (i <arrl.length) merged[k++] = arrl[i++];
while (j < arr2.length) merged[k++] = arr2[j++];

System.out.print("Merged Array: ");
for (int num : merged) {
System.out.print(num + " ");

¥

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

¥
¥

35. Finding the Maximum Product of Two Elements
public class MaxProduct {
public static void main(String[] args) {
int[] arr = {1, 20, 3, 4, 5},
int max1 = Integer.MIN_VALUE, max2 =
Integer.MIN_VALUE;

for (int num : arr) {
if (num > max1) {
max2 = max1;
max1 = num;
} else if (num > max2) {
max2 = num;

¥
¥

System.out.printIn(*Maximum product of two elements: " +
(max1 * max2));

¥
¥

36. Finding Missing Number in a Sequence (1 to N)
public class MissingNumber {
public static void main(String[] args) {
int[] arr = {1, 2, 4, 5, 6}; // Missing 3
int n = arr.length + 1,
inttotalSum=n*(n+1)/2;

for (int num : arr) {
totalSum -= num;
}
System.out.printIn(*Missing number: " + totalSum);
}
}

37. Counting the Number of Even and Odd Elements
public class CountEvenOdd {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6};
int evenCount = 0, oddCount = 0;

for (int num : arr) {
if (num % 2 ==0) {
evenCount++;

}else {

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

oddCount++;

¥
¥

System.out.printin("Even count: " + evenCount);
System.out.printIn(*Odd count: " + oddCount);

¥
¥

38. Finding the Longest Sequence of Consecutive Numbers
import java.util.HashSet;

public class LongestConsecutiveSequence {
public static void main(String[] args) {
int[] arr = {1, 9, 3, 10, 4, 20, 2};
HashSet<Integer> set = new HashSet<>();
int maxLength = 0;

for (int num : arr) set.add(num);

for (int num : arr) {
if (!set.contains(num - 1)) {
int currentNum = num;
int length = 1;
while (set.contains(currentNum + 1)) {
currentNum-++;
length++;
}
maxLength = Math.max(maxLength, length);
}
}

System.out.printin("Length of longest consecutive sequence:
" + maxLength);

¥
¥

39. Checking if an Array is a Palindrome
public class PalindromeArray {
public static void main(String[] args) {
int[]arr={1, 2, 3, 2, 1};
boolean isPalindrome = true;

for (inti=0; i <arr.length / 2; i++) {
if (arr[i] = arr[arr.length - i - 1]) {
isPalindrome = false;
break;

¥

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



FRRRRRRRRFRFRRRRRRRRFFRRRRFRRRRRRRF

¥
System.out.printin("lIs array a palindrome? " + isPalindrome);
¥

}
40. Splitting an Array into Two Equal Sum Subarrays

public class SplitArrayEqualSum {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 5, 2};
int leftSum = 0, rightSum = 0;

for (int num : arr) rightSum += num;

boolean canSplit = false;

for (inti=0; i <arr.length; i++) {
leftSum +=arrJi];
rightSum -= arr[i];

if (leftSum == rightSum) {
canSplit = true;
System.out.printin("Array can be split at index: " + i);
break;

¥
¥

if ("canSplit) {
System.out.printIn("Array cannot be split into equal sum
subarrays.");

¥
¥
¥

el el i de de de Ae be e o e Qv de de Ar Ae e e o v e Qv de de Ae Ar e O O de e Ae U O Qe de Ar e o dv de e e Up Or
E e el de Qv de dr dr Ar Ao e o O v Qv de de Ar Ae e e e v de Qe de de Ae Ar e O Qv dr e Ae U O Qe dr Ar e v dv de e U Up Or

FFRFRFRF R R R RF RN



	1. Finding the Largest Element in an Array
	2. Finding the Smallest Element in an Array
	3. Reversing an Array
	4. Sorting an Array Using Bubble Sort
	5. Counting Even and Odd Elements in an Array
	6. Merging Two Arrays
	7. Finding the Sum of All Elements in an Array
	8. Copying an Array
	9. Removing Duplicates from an Array
	10. Binary Search in a Sorted Array
	11. Finding the Largest Element in an Array
	12. Finding the Smallest Element in an Array
	13. Reversing an Array
	14. Sorting an Array Using Bubble Sort
	15. Counting Even and Odd Elements in an Array
	16. Merging Two Arrays
	17. Finding the Sum of All Elements in an Array
	18. Copying an Array
	19. Removing Duplicates from an Array
	20. Binary Search in a Sorted Array
	21. Finding the Second Largest Element in an Array
	22. Inserting an Element at a Specific Position in an Array
	23. Deleting an Element from a Specific Position in an Array
	24. Finding the Frequency of Each Element in an Array
	25. Finding the Sum of Diagonal Elements in a 2D Array (Matrix)
	26. Transposing a Matrix
	27. Shifting Elements in an Array to the Left
	28. Rotating Elements in an Array to the Right
	29. Finding the Pair of Elements with a Given Sum
	30. Counting Positive, Negative, and Zero Elements in an Array

