
1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

101 String methods
Here is a list of commonly used 101 String methods in Java, along with examples

for each:

1. length()

Returns the length of the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Length: " + str.length()); // Output: 5

 }

}

2. charAt()

Returns the character at the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Character at index 1: " + str.charAt(1)); // Output: e

 }

}

3. substring()

Extracts a substring from the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Substring: " + str.substring(6)); // Output: World

 }

}

4. equals()

Checks if two strings are equal.

public class Main {

 public static void main(String[] args) {

 String str1 = "Hello";

 String str2 = "Hello";

 System.out.println("Are strings equal? " + str1.equals(str2)); // Output: true

 }

}

5. equalsIgnoreCase()

Compares two strings, ignoring case.

public class Main {

 public static void main(String[] args) {

 String str1 = "HELLO";

 String str2 = "hello";

 System.out.println("Are strings equal ignoring case? " +

str1.equalsIgnoreCase(str2)); // Output: true

 }

}

6. toUpperCase() and toLowerCase()

Converts the string to uppercase or lowercase.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Uppercase: " + str.toUpperCase()); // Output: HELLO

 System.out.println("Lowercase: " + str.toLowerCase()); // Output: hello

 }

}

7. trim()

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

Removes leading and trailing whitespace.

public class Main {

 public static void main(String[] args) {

 String str = " Hello ";

 System.out.println("Trimmed: '" + str.trim() + "'"); // Output: 'Hello'

 }

}

8. replace()

Replaces occurrences of a character or substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Replaced: " + str.replace("World", "Java")); // Output:

Hello Java

 }

}

9. contains()

Checks if the string contains a specified sequence of characters.

public class Main {

 public static void main(String[] args) {

 String str = "Hello Java";

 System.out.println("Contains 'Java': " + str.contains("Java")); // Output: true

 }

}

10. startsWith() and endsWith()

Checks if the string starts or ends with a specified substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Starts with 'Hello': " + str.startsWith("Hello")); // Output:

true

 System.out.println("Ends with 'World': " + str.endsWith("World")); // Output:

true

 }

}

11. indexOf()

Returns the index of the first occurrence of a character or substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Index of 'o': " + str.indexOf('o')); // Output: 4

 }

}

12. lastIndexOf()

Returns the index of the last occurrence of a character or substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Last index of 'o': " + str.lastIndexOf('o')); // Output: 7

 }

}

13. isEmpty()

Checks if the string is empty.

public class Main {

 public static void main(String[] args) {

 String str = "";

 System.out.println("Is empty: " + str.isEmpty()); // Output: true

 }

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

}

14. split()

Splits the string into an array based on a delimiter.

public class Main {

 public static void main(String[] args) {

 String str = "Java is fun";

 String[] words = str.split(" ");

 for(String word : words) {

 System.out.println(word); // Output: Java \n is \n fun

 }

 }

}

15. concat()

Concatenates (joins) two strings.

public class Main {

 public static void main(String[] args) {

 String str1 = "Hello";

 String str2 = "World";

 System.out.println("Concatenated: " + str1.concat(" ").concat(str2)); //

Output: Hello World

 }

}

16. valueOf()

Converts different types to a string.

public class Main {

 public static void main(String[] args) {

 int num = 100;

 System.out.println("String value: " + String.valueOf(num)); // Output: 100

 }

}

17. compareTo()

Compares two strings lexicographically.

public class Main {

 public static void main(String[] args) {

 String str1 = "Apple";

 String str2 = "Banana";

 System.out.println("Comparison result: " + str1.compareTo(str2)); // Output:

Negative number (because "Apple" < "Banana")

 }

}

18. matches()

Tests if the string matches the given regular expression.

public class Main {

 public static void main(String[] args) {

 String str = "Java123";

 System.out.println("Matches regex: " + str.matches("[A-Za-z]+\\d+")); //

Output: true

 }

}

19. toCharArray()

Converts the string into a character array.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 char[] charArray = str.toCharArray();

 for(char ch : charArray) {

 System.out.println(ch); // Output: H \n e \n l \n l \n o

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 }

 }

}

20. intern()

Returns a canonical representation for the string. It ensures that all strings with the same

content share the same memory.

public class Main {

 public static void main(String[] args) {

 String str1 = new String("Hello").intern();

 String str2 = "Hello";

 System.out.println(str1 == str2); // Output: true (because they point to the

same string in the pool)

 }

}

21. regionMatches()

Compares a specific region of one string with a specific region of another string.

public class Main {

 public static void main(String[] args) {

 String str1 = "HelloWorld";

 String str2 = "WorldHello";

 boolean result = str1.regionMatches(5, str2, 0, 5);

 System.out.println("Region matches: " + result); // Output: true

 }

}

22. replaceFirst()

Replaces the first occurrence of a regex with a replacement string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Replace first 'o': " + str.replaceFirst("o", "O")); // Output:

HellO World

 }

}

23. replaceAll()

Replaces all occurrences of a regex with a replacement string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Replace all 'l': " + str.replaceAll("l", "L")); // Output:

HeLLo WorLd

 }

}

24. codePointAt()

Returns the Unicode code point of the character at the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Code point at index 1: " + str.codePointAt(1)); // Output:

101 (Unicode for 'e')

 }

}

25. codePointBefore()

Returns the Unicode code point of the character before the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 System.out.println("Code point before index 1: " + str.codePointBefore(1)); //

Output: 72 (Unicode for 'H')

 }

}

26. codePointCount()

Returns the number of Unicode code points in the specified text range.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Code point count: " + str.codePointCount(0, str.length()));

// Output: 5

 }

}

27. getBytes()

Encodes the string into a sequence of bytes using the specified charset.

import java.nio.charset.StandardCharsets;

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 byte[] byteArray = str.getBytes(StandardCharsets.UTF_8);

 for(byte b : byteArray) {

 System.out.print(b + " "); // Output: 72 101 108 108 111

 }

 }

}

28. join()

Joins multiple strings with a specified delimiter.

public class Main {

 public static void main(String[] args) {

 String joined = String.join("-", "Java", "is", "fun");

 System.out.println("Joined string: " + joined); // Output: Java-is-fun

 }

}

29. format()

Formats the string using the specified format and arguments.

public class Main {

 public static void main(String[] args) {

 String str = String.format("Hello %s, you are %d years old.", "John", 25);

 System.out.println(str); // Output: Hello John, you are 25 years old.

 }

}

30. compareToIgnoreCase()

Compares two strings lexicographically, ignoring case differences.

public class Main {

 public static void main(String[] args) {

 String str1 = "apple";

 String str2 = "Apple";

 System.out.println(str1.compareToIgnoreCase(str2)); // Output: 0 (because

they are the same, ignoring case)

 }

}

31. subSequence()

Returns a new character sequence that is a subsequence of this string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println("Subsequence: " + str.subSequence(0, 5)); // Output: Hello

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 }

}

32. offsetByCodePoints()

Returns the index within the string that is offset from the given index by the specified

number of code points.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Offset by code points: " + str.offsetByCodePoints(0, 2)); //

Output: 2

 }

}

33. hashCode()

Returns the hash code of the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("Hash code: " + str.hashCode()); // Output: unique hash

code for the string

 }

}

34. getChars()

Copies characters from a string into a destination character array.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 char[] dest = new char[5];

 str.getChars(0, 5, dest, 0);

 System.out.println(dest); // Output: Hello

 }

}

35. getBytes(Charset charset)

Encodes the string into a byte array using the specified charset.

import java.nio.charset.StandardCharsets;

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 byte[] byteArray = str.getBytes(StandardCharsets.UTF_8);

 for(byte b : byteArray) {

 System.out.print(b + " "); // Output: 72 101 108 108 111 32 87 111 114 108

100

 }

 }

}

36. contentEquals()

Checks whether the string's content matches a CharSequence or StringBuffer.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 StringBuffer sb = new StringBuffer("Hello");

 System.out.println("Content equals: " + str.contentEquals(sb)); // Output: true

 }

}

37. compareTo()

Compares two strings lexicographically based on the Unicode values of each character.

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

public class Main {

 public static void main(String[] args) {

 String str1 = "abc";

 String str2 = "xyz";

 System.out.println(str1.compareTo(str2)); // Output: negative number

because "abc" < "xyz"

 }

}

38. split(String regex, int limit)

Splits the string around matches of the given regular expression, with a limit on the

number of results.

public class Main {

 public static void main(String[] args) {

 String str = "Java is fun is interesting";

 String[] words = str.split(" ", 3); // limit to 3 parts

 for (String word : words) {

 System.out.println(word);

 }

 // Output:

 // Java

 // is

 // fun is interesting

 }

}

39. copyValueOf()

Returns a string that represents the character array.

public class Main {

 public static void main(String[] args) {

 char[] data = { 'H', 'e', 'l', 'l', 'o' };

 String str = String.copyValueOf(data);

 System.out.println(str); // Output: Hello

 }

}

40. lines()

Returns a Stream<String> of lines from the string, separated by line terminators.

import java.util.stream.Stream;

public class Main {

 public static void main(String[] args) {

 String str = "Hello\nWorld\nJava";

 Stream<String> lines = str.lines();

 lines.forEach(System.out::println);

 // Output:

 // Hello

 // World

 // Java

 }

}

41. strip()

Removes leading and trailing spaces from the string (similar to trim() but with Unicode

support).

public class Main {

 public static void main(String[] args) {

 String str = " Hello World ";

 System.out.println("'" + str.strip() + "'"); // Output: 'Hello World'

 }

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

}

42. stripLeading()

Removes only the leading whitespace from the string.

public class Main {

 public static void main(String[] args) {

 String str = " Hello World";

 System.out.println("'" + str.stripLeading() + "'"); // Output: 'Hello World'

 }

}

43. stripTrailing()

Removes only the trailing whitespace from the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World ";

 System.out.println("'" + str.stripTrailing() + "'"); // Output: 'Hello World'

 }

}

44. repeat()

Repeats the string a given number of times.

public class Main {

 public static void main(String[] args) {

 String str = "Java ";

 System.out.println(str.repeat(3)); // Output: Java Java Java

 }

}

45. indent()

Adds a specified number of spaces to the beginning of each line of the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello\nWorld";

 System.out.println(str.indent(4));

 // Output:

 // Hello

 // World

 }

}

46. transform()

Applies a transformation function to the string.

public class Main {

 public static void main(String[] args) {

 String str = "Java";

 String result = str.transform(s -> s.toUpperCase());

 System.out.println(result); // Output: JAVA

 }

}

47. formatted()

Formats the string with the provided arguments (similar to String.format()).

public class Main {

 public static void main(String[] args) {

 String template = "Hello, %s!";

 String result = template.formatted("World");

 System.out.println(result); // Output: Hello, World!

 }

}

48. isBlank()

Checks if the string is empty or contains only whitespace.

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

public class Main {

 public static void main(String[] args) {

 String str = " ";

 System.out.println(str.isBlank()); // Output: true

 }

}

49. concat() (Advanced usage with objects)

Concatenates multiple objects converted to strings.

public class Main {

 public static void main(String[] args) {

 String str = "Hello".concat(" ").concat(String.valueOf(123));

 System.out.println(str); // Output: Hello 123

 }

}

50. join(CharSequence delimiter, CharSequence... elements)

Joins multiple CharSequence elements using the provided delimiter.

public class Main {

 public static void main(String[] args) {

 String result = String.join(", ", "Java", "is", "fun");

 System.out.println(result); // Output: Java, is, fun

 }

}

51. isUpperCase()

Java doesn’t have a String.isUpperCase() method directly, but you can use

Character.isUpperCase() for individual characters.

public class Main {

 public static void main(String[] args) {

 char ch = 'A';

 System.out.println(Character.isUpperCase(ch)); // Output: true

 }

}

52. isLowerCase()

Similarly, there’s no String.isLowerCase(), but you can check individual characters using

Character.isLowerCase().

public class Main {

 public static void main(String[] args) {

 char ch = 'a';

 System.out.println(Character.isLowerCase(ch)); // Output: true

 }

}

53. isLetter()

Checks if a given character is a letter.

public class Main {

 public static void main(String[] args) {

 char ch = 'a';

 System.out.println(Character.isLetter(ch)); // Output: true

 }

}

54. isDigit()

Checks if a character is a digit.

public class Main {

 public static void main(String[] args) {

 char ch = '5';

 System.out.println(Character.isDigit(ch)); // Output: true

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 }

}

55. isWhitespace()

Checks if a character is a whitespace character.

public class Main {

 public static void main(String[] args) {

 char ch = ' ';

 System.out.println(Character.isWhitespace(ch)); // Output: true

 }

}

56. trim()

Removes leading and trailing whitespaces from the string.

public class Main {

 public static void main(String[] args) {

 String str = " Hello World ";

 System.out.println("'" + str.trim() + "'"); // Output: 'Hello World'

 }

}

57. valueOf()

Converts different types of values (int, double, char array, etc.) to their String

representation.

public class Main {

 public static void main(String[] args) {

 int num = 100;

 String str = String.valueOf(num);

 System.out.println(str); // Output: "100"

 char[] chars = {'H', 'e', 'l', 'l', 'o'};

 String str2 = String.valueOf(chars);

 System.out.println(str2); // Output: "Hello"

 }

}

58. indexOf()

Returns the index of the first occurrence of the specified character or substring in the

string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println(str.indexOf('o')); // Output: 4

 System.out.println(str.indexOf("World")); // Output: 6

 }

}

59. lastIndexOf()

Returns the index of the last occurrence of the specified character or substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World Hello";

 System.out.println(str.lastIndexOf('o')); // Output: 15

 System.out.println(str.lastIndexOf("Hello")); // Output: 12

 }

}

60. startsWith()

Checks if the string starts with the specified prefix.

public class Main {

 public static void main(String[] args) {

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 String str = "Hello World";

 System.out.println(str.startsWith("Hello")); // Output: true

 }

}

61. endsWith()

Checks if the string ends with the specified suffix.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println(str.endsWith("World")); // Output: true

 }

}

62. toUpperCase()

Converts all the characters of the string to uppercase.

public class Main {

 public static void main(String[] args) {

 String str = "hello world";

 System.out.println(str.toUpperCase()); // Output: HELLO WORLD

 }

}

63. toLowerCase()

Converts all the characters of the string to lowercase.

public class Main {

 public static void main(String[] args) {

 String str = "HELLO WORLD";

 System.out.println(str.toLowerCase()); // Output: hello world

 }

}

64. codePointAt()

Returns the Unicode code point of the character at the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println(str.codePointAt(0)); // Output: 72 (Unicode for 'H')

 }

}

65. codePointBefore()

Returns the Unicode code point before the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println(str.codePointBefore(1)); // Output: 72 (Unicode for 'H')

 }

}

66. substring()

Extracts a substring from the string starting from the specified index, optionally ending

at another index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println(str.substring(6)); // Output: "World"

 System.out.println(str.substring(0, 5)); // Output: "Hello"

 }

}

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

67. contains()

Checks if the string contains the specified sequence of characters.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 System.out.println(str.contains("World")); // Output: true

 }

}

68. split()

Splits a string into an array of substrings based on a regular expression (or a specific

delimiter).

public class Main {

 public static void main(String[] args) {

 String str = "apple,banana,orange";

 String[] fruits = str.split(",");

 for (String fruit : fruits) {

 System.out.println(fruit);

 }

 // Output:

 // apple

 // banana

 // orange

 }

}

69. replace()

Replaces all occurrences of a character or substring with another character or substring.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 String result = str.replace("World", "Java");

 System.out.println(result); // Output: Hello Java

 }

}

70. replaceAll()

Replaces all substrings that match a given regular expression.

public class Main {

 public static void main(String[] args) {

 String str = "123abc456";

 String result = str.replaceAll("\\d", "X"); // Replaces digits with 'X'

 System.out.println(result); // Output: XXXabcXXX

 }

}

71. replaceFirst()

Replaces the first occurrence of a substring that matches a given regular expression.

public class Main {

 public static void main(String[] args) {

 String str = "123abc456";

 String result = str.replaceFirst("\\d", "X"); // Replaces the first digit with 'X'

 System.out.println(result); // Output: X23abc456

 }

}

72. intern()

Returns a canonical representation of the string. If the string is already in the string pool,

it returns that instance. Otherwise, it adds the string to the pool and returns the

reference.

public class Main {

 public static void main(String[] args) {

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 String str1 = new String("Hello").intern();

 String str2 = "Hello";

 System.out.println(str1 == str2); // Output: true (because both refer to the

same instance)

 }

}

73. charAt()

Returns the character at the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 char ch = str.charAt(1); // 'e'

 System.out.println(ch); // Output: e

 }

}

74. getChars()

Copies characters from a string to a character array.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 char[] arr = new char[5];

 str.getChars(0, 5, arr, 0);

 System.out.println(arr); // Output: Hello

 }

}

75. concat()

Concatenates the specified string to the end of the current string.

public class Main {

 public static void main(String[] args) {

 String str1 = "Hello";

 String str2 = " World";

 String result = str1.concat(str2);

 System.out.println(result); // Output: Hello World

 }

}

76. regionMatches()

Tests if two string regions are equal.

public class Main {

 public static void main(String[] args) {

 String str1 = "Hello World";

 String str2 = "Hello Java";

 boolean match = str1.regionMatches(0, str2, 0, 5);

 System.out.println(match); // Output: true (because "Hello" matches in

both strings)

 }

}

77. matches()

Checks if the string matches a given regular expression.

public class Main {

 public static void main(String[] args) {

 String str = "abc123";

 boolean isMatch = str.matches("[a-z]+\\d+");

 System.out.println(isMatch); // Output: true (matches the pattern)

 }

}

78. toCharArray()

Converts the string into a character array.

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 char[] chars = str.toCharArray();

 for (char c : chars) {

 System.out.print(c + " ");

 }

 // Output: H e l l o

 }

}

79. join()

Joins an array of strings using a delimiter.

import java.util.StringJoiner;

public class Main {

 public static void main(String[] args) {

 String[] words = {"apple", "banana", "orange"};

 String result = String.join(", ", words);

 System.out.println(result); // Output: apple, banana, orange

 }

}

80. format()

Returns a formatted string using the specified format string and arguments, similar to

printf.

public class Main {

 public static void main(String[] args) {

 String name = "John";

 int age = 25;

 String result = String.format("My name is %s and I am %d years old.", name,

age);

 System.out.println(result); // Output: My name is John and I am 25 years

old.

 }

}

81. compareTo()

Compares two strings lexicographically.

public class Main {

 public static void main(String[] args) {

 String str1 = "apple";

 String str2 = "banana";

 int result = str1.compareTo(str2);

 System.out.println(result); // Output: -1 (because "apple" is

lexicographically less than "banana")

 }

}

82. compareToIgnoreCase()

Compares two strings lexicographically, ignoring case differences.

public class Main {

 public static void main(String[] args) {

 String str1 = "apple";

 String str2 = "Apple";

 int result = str1.compareToIgnoreCase(str2);

 System.out.println(result); // Output: 0 (because "apple" and "Apple" are

considered equal, ignoring case)

 }

}

83. contentEquals()

Checks if the string content matches a StringBuffer or CharSequence.

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 StringBuffer buffer = new StringBuffer("Hello");

 boolean result = str.contentEquals(buffer);

 System.out.println(result); // Output: true

 }

}

84. substring()

Returns a substring from a given string, starting from the specified index, optionally up

to an ending index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 String result = str.substring(6); // From index 6 to the end

 System.out.println(result); // Output: World

 String result2 = str.substring(0, 5); // From index 0 to 5

 System.out.println(result2); // Output: Hello

 }

}

85. hashCode()

Returns the hash code of the string, useful for storing strings in hash-based data

structures like HashMap.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 int hash = str.hashCode();

 System.out.println(hash); // Output: unique hash code for "Hello"

 }

}

86. startsWith()

Checks if the string starts with the specified prefix.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 boolean result = str.startsWith("Hello");

 System.out.println(result); // Output: true

 }

}

87. endsWith()

Checks if the string ends with the specified suffix.

public class Main {

 public static void main(String[] args) {

 String str = "Hello World";

 boolean result = str.endsWith("World");

 System.out.println(result); // Output: true

 }

}

88. codePointAt()

Returns the Unicode code point of the character at the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 int codePoint = str.codePointAt(1); // Unicode value of 'e'

 System.out.println(codePoint); // Output: 101 (Unicode value of 'e')

 }

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

}

89. codePointBefore()

Returns the Unicode code point of the character before the specified index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 int codePoint = str.codePointBefore(1); // Unicode value of 'H'

 System.out.println(codePoint); // Output: 72 (Unicode value of 'H')

 }

}

90. codePointCount()

Returns the number of Unicode code points in the specified range of the string.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 int codePointCount = str.codePointCount(0, str.length());

 System.out.println(codePointCount); // Output: 5

 }

}

91. offsetByCodePoints()

Returns the index that is offset by a specified number of code points starting from the

given index.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 int index = str.offsetByCodePoints(0, 3);

 System.out.println(index); // Output: 3 (index of 'l')

 }

}

92. isEmpty()

Checks if the string is empty.

public class Main {

 public static void main(String[] args) {

 String str = "";

 boolean result = str.isEmpty();

 System.out.println(result); // Output: true

 }

}

93. isBlank()

Checks if the string is empty or contains only whitespace characters (available from Java

11).

public class Main {

 public static void main(String[] args) {

 String str = " ";

 boolean result = str.isBlank();

 System.out.println(result); // Output: true

 }

}

94. repeat() (Java 11+)

Repeats the string a specified number of times.

public class Main {

 public static void main(String[] args) {

 String str = "Hi ";

 String repeatedStr = str.repeat(3);

 System.out.println(repeatedStr); // Output: Hi Hi Hi

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 }

}

95. strip() (Java 11+)

Removes leading and trailing whitespace, similar to trim() but also removes other types

of whitespace characters.

public class Main {

 public static void main(String[] args) {

 String str = "\t Hello World \n";

 String strippedStr = str.strip();

 System.out.println(strippedStr); // Output: "Hello World"

 }

}

96. stripLeading() (Java 11+)

Removes leading whitespace characters.

public class Main {

 public static void main(String[] args) {

 String str = " Hello";

 String result = str.stripLeading();

 System.out.println(result); // Output: "Hello"

 }

}

97. stripTrailing() (Java 11+)

Removes trailing whitespace characters.

public class Main {

 public static void main(String[] args) {

 String str = "Hello ";

 String result = str.stripTrailing();

 System.out.println(result); // Output: "Hello"

 }

}

98. indent() (Java 12+)

Adjusts the indentation of the string by a specified number of spaces.

public class Main {

 public static void main(String[] args) {

 String str = "Hello\nWorld";

 String indentedStr = str.indent(4); // Adds 4 spaces to the beginning of each

line

 System.out.println(indentedStr);

 }

}

99. transform() (Java 12+)

Applies a function to the string and returns the result.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 String result = str.transform(s -> s + " World");

 System.out.println(result); // Output: Hello World

 }

}

100. describeConstable() (Java 12+)

Returns an Optional containing the string (a representation of a constant).

import java.util.Optional;

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 Optional<String> optional = str.describeConstable();

1
0

1
 S

T
R

IN
G

 F
U

N
C

T
IO

N

 optional.ifPresent(System.out::println); // Output: Hello

 }

}

101. resolveConstantDesc() (Java 12+)

Returns the string itself as a constant description.

public class Main {

 public static void main(String[] args) {

 String str = "Hello";

 Object constant = str.resolveConstantDesc(null);

 System.out.println(constant); // Output: Hello

 }}

The world is yours, and everything in it,

it's out there, get on your grind and get it."

- Rick Ross.

1
0

1
 STR

IN
G

 FU
N

C
TIO

N

