PATAA ATV A A
101 String methods

Here is a list of commonly used 101 String methods in Java, along with examples

H
o
H
0p}
_|
A0
for each: >
1. length() ®
Returns the length of the string. m
: : C
public class Main { >
public static void main(String[] args) { @)
String str = "Hello™; :I
System.out.printin("Length: " + str.length()); // Output: 5 CZD
¥
¥
2. charAt()

Returns the character at the specified index.
public class Main {
public static void main(String[] args) {
String str = "Hello";
System.out.printin("Character at index 1: " + str.charAt(1)); // Output: e

}

}
3. substring()

Extracts a substring from the string.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printIn("Substring: " + str.substring(6)); // Output: World

}

}
4. equals()

Checks if two strings are equal.
public class Main {
public static void main(String[] args) {
String strl = "Hello";
String str2 = "Hello";
System.out.printIn("Are strings equal? " + strl.equals(str2)); // Output: true

¥
¥

5. equalslgnoreCase()
Compares two strings, ignoring case.
public class Main {
public static void main(String[] args) {
String strl = "HELLO";
String str2 = "hello";
System.out.printin("Are strings equal ignoring case? " +
strl.equalslgnoreCase(str2)); // Output: true

¥

b
6. toUpperCase() and toLowerCase()

Converts the string to uppercase or lowercase.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
System.out.printin(*Uppercase: " + str.toUpperCase()); // Output:
System.out.printIn("Lowercase: " + str.toLowerCase()); // Output:

¥
¥

7. trim()

1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR R R KRR R R KRR KRR R KRR R R KRR

*=\
K
K

L 4444444444444 44494444444444444474

Removes leading and trailing whitespace.
public class Main {
public static void main(String[] args) {
Stringstr=" Hello ";
System.out.printin("Trimmed: ™ + str.trim() + *"); // Output: "Hello"

}

}
8. replace()

Replaces occurrences of a character or substring.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printin("Replaced: " + str.replace("World", "Java")); // Output:
Hello Java

¥
¥

9. contains()
Checks if the string contains a specified sequence of characters.
public class Main {
public static void main(String[] args) {
String str = "Hello Java™;
System.out.printIn("Contains ‘Java": " + str.contains("Java")); // Output: true

}

¥
10. startsWith() and endsWith()

Checks if the string starts or ends with a specified substring.
public class Main {
public static void main(String[] args) {

String str = "Hello World";

System.out.printIn("Starts with 'Hello": " + str.startsWith(""Hello")); // Outpu
true

System.out.printIn("Ends with 'World': " + str.endsWith("World")); // Outpu
true

}

¥
11. indexOf()

Returns the index of the first occurrence of a character or substring.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printn("'Index of '0": " + str.indexOf('0")); // Output: 4

}

¥
12. lastIndexOf()

Returns the index of the last occurrence of a character or substring.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printin("Last index of '0": " + str.lastindexOf('0")); // Output: 7

NOILONNH ONIYLS T0T

}

}
13. iIsEmpty()

Checks if the string is empty.
public class Main {
public static void main(String[] args) {
String str ="";
System.out.printIin("ls empty: " + str.isEmpty()); // Output: true

¥
1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR R R R KRR KRR KRR R R KRR

K
K
K

%KKKKKKKKKKXKXKXKXKXKXKKKKKKKKK

}
K 14. split()
K Splits the string into an array based on a delimiter.
public class Main {
public static void main(String[] args) {

String str = "Java is fun”;

String[] words = str.split(" ");

for(String word : words) {

System.out.printin(word); // Output: Java \n is \n fun

¥
¥

}
15. concat()

Concatenates (joins) two strings.
public class Main {
public static void main(String[] args) {
String strl = "Hello";
String str2 = "World";
System.out.printin("Concatenated: " + strl.concat(" ").concat(str2)); //
Output: Hello World

}

}
16. valueOf()

Converts different types to a string.
public class Main {
public static void main(String[] args) {
int num = 100;
System.out.printIn('String value: " + String.valueOf(num)); // Output: 100
}

}
17. compareTo()

Compares two strings lexicographically.
public class Main {
public static void main(String[] args) {
String strl = "Apple";
String str2 = "Banana";
System.out.printIn("Comparison result: " + strl.compareTo(str2)); // Output:
Negative number (because ""Apple™ < *"‘Banana'’)

¥
¥

NOILONNA ONIYLS TOT

18. matches()
Tests if the string matches the given regular expression.
public class Main {
public static void main(String[] args) {
String str = "Javal23";
System.out.printin("Matches regex: " + str.matches("[A-Za-z]+\\d+")); //
Output: true

¥

}
19. toCharArray()

Converts the string into a character array.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
char[] charArray = str.toCharArray();
for(char ch : charArray) {
System.out.printin(ch); // Output: H\ne\nI\nl\n o

1 44444444444494444444444444944444

GGG GGG GLLGLLGLGLLGLLGLLGLGLLGLLGLLLGLLL

KKK R R KRR R KR KRR KRR KRR R R KRR

K
K
K

L 4444444444444 44494444444444444474

¥
¥

}
20. intern()

Returns a canonical representation for the string. It ensures that all strings with the same
content share the same memory.

public class Main {
public static void main(String[] args) {
String strl = new String(*"Hello").intern();
String str2 = "Hello™;
System.out.printin(strl == str2); // Output: true (because they point to the
same string in the pool)

}

}
21. regionMatches()

Compares a specific region of one string with a specific region of another string.
public class Main {
public static void main(String[] args) {
String strl = "HelloWorld";
String str2 = "WorldHello";
boolean result = strl.regionMatches(5, str2, 0, 5);
System.out.printin("Region matches: " + result); // Output: true

}

¥
22. replaceFirst()

Replaces the first occurrence of a regex with a replacement string.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printIn("Replace first '0": " + str.replaceFirst("o0", "0")); // Output:
HellO World

}

¥
23. replaceAll()

Replaces all occurrences of a regex with a replacement string.

NOILONNH ONIYLS T0T

public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printin("Replace all 'I': " + str.replaceAll("I", "L")); // Output:
HelL Lo WorLd

}

¥
24. codePointAt()

Returns the Unicode code point of the character at the specified index.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
System.out.println("Code point at index 1: " + str.codePointAt(1)); // Output:
101 (Unicode for 'e")

}

}
25. codePointBefore()

Returns the Unicode code point of the character before the specified index.
public class Main {
public static void main(String[] args) {
String str = "Hello™;

1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR R KR KRR KRR KRR R R

K
K
K

L 4444444444444 44494444444444444474

System.out.printIn("Code point before index 1: " + str.codePointBefore(1)); //
Output: 72 (Unicode for 'H")

¥

}
26. codePointCount()

Returns the number of Unicode code points in the specified text range.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
System.out.printin("Code point count: " + str.codePointCount(0, str.length()))
// Output: 5

}

}
27. getBytes()

Encodes the string into a sequence of bytes using the specified charset.
import java.nio.charset.StandardCharsets;

NOILONNA ONIYLS TOT

public class Main {
public static void main(String[] args) {
String str = "Hello™;
byte[] byteArray = str.getBytes(StandardCharsets.UTF_8);
for(byte b : byteArray) {
System.out.print(b + " *); // Output: 72 101 108 108 111

¥
¥
¥
28. join()
Joins multiple strings with a specified delimiter.
public class Main {
public static void main(String[] args) {
String joined = String.join("-", "Java", "is", "fun");
System.out.printin("Joined string: " + joined); // Output: Java-is-fun
¥

¥
29. format()

Formats the string using the specified format and arguments.
public class Main {
public static void main(String[] args) {
String str = String.format(""Hello %s, you are %d years old.", "John", 25);
System.out.printin(str); // Output: Hello John, you are 25 years old.

¥
¥

30. compareTolgnoreCase()
Compares two strings lexicographically, ignoring case differences.
public class Main {
public static void main(String[] args) {
String strl = "apple";
String str2 = "Apple";
System.out.printin(strl.compareTolgnoreCase(str2)); // Output: 0 (because
they are the same, ignoring case)

}

}
31. subSequence()

Returns a new character sequence that is a subsequence of this string.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printin(Subsequence: " + str.subSequence(0, 5)); // Output: Hell

1 444444444444444444444444444444 14444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR R KRR R KRR R KRR R E R KRR

L 4444444444444 44494444444444444474

¥

¥ }
32. offsetByCodePoints()

Returns the index within the string that is offset from the given index by the specified
number of code points.
public class Main {
public static void main(String[] args) {
String str = "Hello";
System.out.printin("Offset by code points: " + str.offsetByCodePoints(0, 2)); /
Output: 2
by

}
33. hashCode()

Returns the hash code of the string.
public class Main {
public static void main(String[] args) {
String str = "Hello";
System.out.printin("Hash code: " + str.hashCode()); // Output: unique hash
code for the string

¥
¥

KK

34. getChars()
Copies characters from a string into a destination character array.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
char[] dest = new char[5];
str.getChars(0, 5, dest, 0);
System.out.printin(dest); // Output: Hello
}

¥
35. getBytes(Charset charset)

Encodes the string into a byte array using the specified charset.
import java.nio.charset.StandardCharsets;

public class Main {
public static void main(String[] args) {
String str = "Hello World";
byte[] byteArray = str.getBytes(StandardCharsets.UTF_8);
for(byte b : byteArray) {
System.out.print(b + " "); // Output: 72 101 108 108 111 32 87 111 114 10§
100

¥
¥

b
36. contentEquals()

Checks whether the string's content matches a CharSequence or StringBuffer.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
StringBuffer sb = new StringBuffer("Hello™);
System.out.printin("Content equals: " + str.contentEquals(sb)); // O

¥

}
37. compareTo()

Compares two strings lexicographically based on the Unicode values of each character.

] 4444444444444 4449444444444444444

KRR R KRR R KRR R R R R R R KR R R R R R KR KR KK KRR KRR

NOILONNA ONIHLS TOT

A e A A A A A s e At s et aat st st a atad atat adata

3
%
K

L 4444444444444 44494444444444444474

public class Main {
public static void main(String[] args) {
String strl = "abc";
String str2 = "xyz";
System.out.printin(strl.compareTo(str2)); // Output: negative number
because ""abc™ < *'xyz"

¥
hy
38. split(String regex, int limit)
Splits the string around matches of the given regular expression, with a limit on the
number of results.
public class Main {
public static void main(String[] args) {
String str = "Java is fun is interesting";
String[] words = str.split(" ", 3); // limit to 3 parts
for (String word : words) {
System.out.printin(word);
¥
// Output:
Il Java
Il'is
// fun is interesting
¥

¥
39. copyValueOf()

Returns a string that represents the character array.

NOILONNA ONIHLS TOT

public class Main {
public static void main(String[] args) {
char[] data={'H','e",'l','I','0' };
String str = String.copyValueOf(data);
System.out.printin(str); // Output: Hello

}

¥
40. lines()

Returns a Stream<String> of lines from the string, separated by line terminators.
import java.util.stream.Stream;

public class Main {
public static void main(String[] args) {

String str = "Hello\nWorld\nJava";
Stream<String> lines = str.lines();
lines.forEach(System.out::println);
// Output:
// Hello
/' World
/Il Java

¥

}
41. strip()

Removes leading and trailing spaces from the string (similar to trim() but with Upg
support).

public class Main {
public static void main(String[] args) {
String str=" Hello World "
System.out.printin(""" + str.strip() + ""'); // Output: "Hello World"

¥
1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR R KRR KR KRR KRR KRR R R KRR

K
5
K

%KKKKKKKKKKKKKKKKKKKKKKXKKKKXKX

}
X 5 stripLeading()

Removes only the leading whitespace from the string.
public class Main {
public static void main(String[] args) {
String str=" Hello World";
System.out.printin(""* + str.stripLeading() + "); // Output: ‘Hello World®

}

¥
43. stripTrailing()

Removes only the trailing whitespace from the string.

public class Main {
public static void main(String[] args) {
String str = "Hello World "
System.out.printin(**" + str.stripTrailing() + ""); // Output: "Hello World"

}

¥
44, repeat()

Repeats the string a given number of times.
public class Main {
public static void main(String[] args) {
String str = "Java ";
System.out.printin(str.repeat(3)); / Output: Java Java Java
¥

¥
45. indent()

Adds a specified number of spaces to the beginning of each line of the string.

public class Main {
public static void main(String[] args) {
String str = "Hello\nWorld";
System.out.printIn(str.indent(4));
// Output:
/I Hello
/[World

¥
¥

46. transform()
Applies a transformation function to the string.
public class Main {
public static void main(String[] args) {
String str = "Java";
String result = str.transform(s -> s.toUpperCase());
System.out.printin(result); // Output: JAVA

¥

b
47. formatted()

Formats the string with the provided arguments (similar to String.format()).
public class Main {
public static void main(String[] args) {
String template = "Hello, %s!";
String result = template.formatted(*"World");
System.out.printin(result); // Output: Hello, World!

¥

¥
48. isBlank()

Checks if the string is empty or contains only whitespace.

] 4444444444444 4449444444444444444

KRR KRR R KR KRR R R KR R R R R R R R KR R K KRR KRR KRR

NOILONNH ONIYLS TOT

KKK KRR R KRR KRR R KR KRR KRR R R KR

2
s
K

L 4444444444444 44494444444444444474

public class Main {
public static void main(String[] args) {
Stringstr=""
System.out.printin(str.isBlank()); // Output: true

}

}
49. concat() (Advanced usage with objects)

Concatenates multiple objects converted to strings.

public class Main {
public static void main(String[] args) {
String str = "Hello".concat(" "").concat(String.valueOf(123));
System.out.printin(str); // Output: Hello 123

¥
¥

50. join(CharSequence delimiter, CharSequence... elements)
Joins multiple CharSequence elements using the provided delimiter.

NOILONNH ONIYLS T0T

public class Main {
public static void main(String[] args) {
String result = String.join(", ", "Java", "is", "fun");
System.out.printin(result); // Output: Java, is, fun
¥
¥

51. isUpperCase()
Java doesn’t have a String.isUpperCase() method directly, but you can use
Character.isUpperCase() for individual characters.
public class Main {
public static void main(String[] args) {
char ch ="A’;
System.out.printin(Character.isUpperCase(ch)); // Output: true
¥
¥

52. isLowerCase()
Similarly, there’s no String.isLowerCase(), but you can check individual characters using
Character.isLowerCase().

public class Main {
public static void main(String[] args) {
char ch ="a}
System.out.printin(Character.isLowerCase(ch)); // Output: true
¥

¥
53. isLetter()

Checks if a given character is a letter.
public class Main {
public static void main(String[] args) {
char ch ="a}
System.out.printin(Character.isLetter(ch)); // Output: true
}
}
54. isDigit()
Checks if a character is a digit.
public class Main {
public static void main(String[] args) {
char ch ='5
System.out.printin(Character.isDigit(ch)); // Output: true

1444444444444944444444444444444414444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR R KR KRR KRR KRR R R KRR

L 4444444444444 44494444444444444474

}

X) -
X . 2
K 55. isWhitespace() (ﬂ
Checks if a character is a whitespace character. 2y,

Z

public class Main { @

public static void main(String[] args) { E

charch="" Z
System.out.printIn(Character.isWhitespace(ch)); // Output: true Q'

@)

Z

}
56. trim()

Removes leading and trailing whitespaces from the string.

public class Main {
public static void main(String[] args) {
String str =" Hello World *;
System.out.printin("" + str.trim() + "™""); // Output: "Hello World’

}

}
57. valueOf()

Converts different types of values (int, double, char array, etc.) to their String
representation.
public class Main {
public static void main(String[] args) {
int num = 100;
String str = String.valueOf(num);
System.out.printIn(str); // Output: 100"

char[] chars = {'H', 'e",'I', 'I', '0'};
String str2 = String.valueOf(chars);
System.out.printin(str2); // Output: ""Hello"

}

}
58. indexOf()

Returns the index of the first occurrence of the specified character or substring in the
string.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printIn(str.indexOf('0")); // Output: 4
System.out.printIn(str.indexOf("World")); // Output: 6

}

¥
59. lastIndexOf()

Returns the index of the last occurrence of the specified character or substring.

public class Main {
public static void main(String[] args) {
String str = "Hello World Hello";
System.out.printIn(str.lastindexOf('0")); // Output: 15
System.out.printin(str.lastindexOf("Hello")); // Output: 12

}

¥
K 60. startsWith()

Checks if the string starts with the specified prefix.
public class Main {
public static void main(String[] args) {

1 4444444444444 444444444444444444(444'S

KKK R R KRR R R R KR KRR R R KRR KRR KRR KRR KRR

KKK
KKK KRR KRR KRR KRR KRR KRR KRR KRR KRR

L 4444444444444 44494444444444444474

String str = "Hello World";
System.out.printIn(str.startsWith(""Hello™)); // Output: true

¥

}
61. endsWith()

Checks if the string ends with the specified suffix.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printIn(str.endsWith(""World™)); // Output: true

}

}
62. toUpperCase()

Converts all the characters of the string to uppercase.

public class Main {
public static void main(String[] args) {
String str = "hello world";
System.out.printin(str.toUpperCase()); // Output: HELLO WORLD

}

}
63. toLowerCase()

Converts all the characters of the string to lowercase.
public class Main {
public static void main(String[] args) {
String str = "HELLO WORLD™;
System.out.printin(str.toLowerCase()); // Output: hello world

}

}
64. codePointAt()

Returns the Unicode code point of the character at the specified index.

public class Main {
public static void main(String[] args) {
String str = "Hello™;
System.out.printIn(str.codePointAt(0)); // Output: 72 (Unicode for "H")

}

}
65. codePointBefore()

Returns the Unicode code point before the specified index.

public class Main {
public static void main(String[] args) {
String str = "Hello™;
System.out.printin(str.codePointBefore(1)); // Output: 72 (Unicode for 'H")

¥

b
66. substring()

Extracts a substring from the string starting from the specified index, optionally ending
at another index.

public class Main {
public static void main(String[] args) {
String str = "Hello World";
System.out.printIn(str.substring(6)); // Output: ""World""
System.out.printIn(str.substring(0, 5)); // Output: ""Hello™

¥
¥

1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

=
o
—
0p)
_|
22
Z
()
-
C
Z
O
—
@)
Z

KKK KRR KRR KRR R KRR KRR R KRR R R KRR

K
s
K

L 4444444444444 44494444444444444474

67. contains() 5
K Checks if the string contains the specified sequence of characters. ;
_|

public class Main { A

public static void main(String[] args) { %

String str = "Hello World"; -
System.out.printIn(str.contains("World")); // Output: true C

} Z

) =

68. split() @)
Splits a string into an array of substrings based on a regular expression (or a specific Z

delimiter).
public class Main {
public static void main(String[] args) {
String str = "apple,banana,orange”;
String[] fruits = str.split(",");
for (String fruit : fruits) {
System.out.printin(fruit);
¥
// Output:
Il apple
/l banana
// orange

}

¥
69. replace()

Replaces all occurrences of a character or substring with another character or substring.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
String result = str.replace("World", "Java");
System.out.printin(result); // Output: Hello Java

}

¥
70. replaceAll()

Replaces all substrings that match a given regular expression.
public class Main {
public static void main(String[] args) {
String str = "123abc456";
String result = str.replaceAll("\d", "X"); // Replaces digits with 'X'
System.out.printin(result); // Output: XXXabcXXX

}

}
71. replaceFirst()

Replaces the first occurrence of a substring that matches a given regular expression.
public class Main {
public static void main(String[] args) {
String str = "123abc456";
String result = str.replaceFirst("\\d", "X"); // Replaces the first digit with 'X'
System.out.printin(result); // Output: X23abc456

}

}
72. intern()

Returns a canonical representation of the string. If the string is already in the §
it returns that instance. Otherwise, it adds the string to the pool and returns thy
reference.
public class Main {
public static void main(String[] args) {

1 4444444444444 44444444444444444

KKK KRR KRR KRR KRR R KRR R R R R R KRR R R R KRR KRR KR KRR

KKK KRR KRR KRR R KR KRR KRR KRR R R KRR

K
K
K

L 4444444444444 44494444444444444474

String strl = new String("Hello").intern();

String str2 = "Hello";

System.out.printin(strl == str2); // Output: true (because both refer to the
same instance)

}

}
73. charAt()

Returns the character at the specified index.
public class Main {
public static void main(String[] args) {
String str = "Hello";
char ch = str.charAt(1); // ‘e’
System.out.printin(ch); // Output: e

}

¥
74. getChars()

Copies characters from a string to a character array.
public class Main {

public static void main(String[] args) {
String str = "Hello World";
char[] arr = new char[5];
str.getChars(0, 5, arr, 0);
System.out.printin(arr); // Output: Hello

}

¥
75. concat()

Concatenates the specified string to the end of the current string.

NOILONNA ONIHLS TOT

public class Main {
public static void main(String[] args) {
String strl = "Hello";
String str2 =" World";
String result = strl.concat(str2);
System.out.printin(result); // Output: Hello World

}

¥
76. regionMatches()

Tests if two string regions are equal.
public class Main {
public static void main(String[] args) {

String strl = "Hello World";
String str2 = "Hello Java";
boolean match = strl.regionMatches(0, str2, 0, 5);
System.out.printin(match); // Output: true (because "*Hello™ matches in

both strings)

¥

b
77. matches()

Checks if the string matches a given regular expression.
public class Main {
public static void main(String[] args) {
String str = "abc123";
boolean isMatch = str.matches("[a-z]+\\d+");
System.out.printin(isMatch); // Output: true (matches the patter

¥

¥
78. toCharArray()

Converts the string into a character array.

1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR R KRR R KRR R KRR R R R R

3
%
K

L 4444444444444 4444444444444444449"

}

H

public class Main { G
public static void main(String[] args) { wm
String str = "Hello™; ;_UI
char[] chars = str.toCharArray(); E
for (char c : chars) { ®
System.out.print(c + " "); T

3 C
Z

// Output: Hello @)
-

@)

Z

hy
79. join()
Joins an array of strings using a delimiter.
import java.util.StringJoiner;
public class Main {
public static void main(String[] args) {
String[] words = {"apple", "banana", "orange"};
String result = String.join(", ", words);
System.out.printin(result); // Output: apple, banana, orange
¥

}
80. format()

Returns a formatted string using the specified format string and arguments, similar to
printf.
public class Main {
public static void main(String[] args) {
String name = "John";
int age = 25;
String result = String.format("My name is %s and | am %d years old.", name,
age);
System.out.printin(result); // Output: My name is John and | am 25 years
old.

}

¥
81. compareTo()

Compares two strings lexicographically.
public class Main {
public static void main(String[] args) {

String strl = "apple";
String str2 = "banana™;
int result = strl.compareTo(str2);
System.out.printin(result); // Output: -1 (because "apple™ is

lexicographically less than ""banana’™)

¥
¥

82. compareTolgnoreCase()
Compares two strings lexicographically, ignoring case differences.

public class Main {
public static void main(String[] args) {
String strl = "apple™;

String str2 = "Apple™;
int result = strl.compareTolgnoreCase(str2);

System.out.printin(result); // Output: 0 (because "apple’ and " Apf
considered equal, ignoring case)
}

}
83. contentEquals()

Checks if the string content matches a StringBuffer or CharSequence.

1 4444444444444 4449444444444444449r

LG LG GGG LLGLLLLLLGLLGLLLGLLGLLL

KKK KRR KRR KRR R KRR R KRR KRR R ERRER

K
K
K

L 4444444444444 44494444444444444474

public class Main {

84. substring()
Returns a substring from a given string, starting from the specified index, optionally up
to an ending index.
public class Main {
public static void main(String[] args) {

String str = "Hello World";

String result = str.substring(6); // From index 6 to the end

System.out.printin(result); // Output: World

public static void main(String[] args) { '5
String str = "Hello™; =
StringBuffer buffer = new StringBuffer("Hello"); (ﬂ
boolean result = str.contentEquals(buffer); E
System.out.printin(result); // Output: true GZ)

}

-
} C
Z
@)
—
@)
Z

String result2 = str.substring(0, 5); // From index 0 to 5
System.out.printin(result2); // Output: Hello

}

}
85. hashCode()

Returns the hash code of the string, useful for storing strings in hash-based data
structures like HashMap.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
int hash = str.hashCode();
System.out.printin(hash); // Output: unique hash code for "*Hello™

}

}
86. startsWith()

Checks if the string starts with the specified prefix.

public class Main {
public static void main(String[] args) {
String str = "Hello World";
boolean result = str.startsWith(*"Hello");
System.out.printin(result); // Output: true

¥

}
87. endsWith()

Checks if the string ends with the specified suffix.
public class Main {
public static void main(String[] args) {
String str = "Hello World";
boolean result = str.endsWith("World");
System.out.printin(result); // Output: true

¥

}
88. codePointAt()

Returns the Unicode code point of the character at the specified index.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
int codePoint = str.codePointAt(1); // Unicode value of 'e'
System.out.printin(codePoint); // Output: 101 (Unicode value of ‘e’

¥
1 44444444444494444444444444944444

LG LG GGG GLLGLLGLLLGLLGLLGLLLGLLGLLG L s

KKK KRR KRR KRR KRR KRR KRR KRR R ERRE

K
K
K

%K\C\C\C\QC\QC\QOQQK\QK\C\C\C\CK\C\C\CK\CK\CK\CK

}
K 89. codePointBefore()

Returns the Unicode code point of the character before the specified index.

public class Main {
public static void main(String[] args) {
String str = "Hello™;
int codePoint = str.codePointBefore(1); // Unicode value of 'H'
System.out.printin(codePoint); // Output: 72 (Unicode value of 'H")

}

¥
90. codePointCount()

Returns the number of Unicode code points in the specified range of the string.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
int codePointCount = str.codePointCount(0, str.length());
System.out.printin(codePointCount); // Output: 5

}

}
91. offsetByCodePoints()

Returns the index that is offset by a specified number of code points starting from the
given index.

[N
(@)
[IEN
wn
_|
2%
Z
@
T
-
Z
@
-
®)
Z

public class Main {
public static void main(String[] args) {
String str = "Hello";
int index = str.offsetByCodePoints(0, 3);
System.out.printin(index); // Output: 3 (index of 'I")

}

}
92. isEmpty()

Checks if the string is empty.
public class Main {
public static void main(String[] args) {
String str ="";
boolean result = str.isEmpty();
System.out.printin(result); // Output: true

¥

}
93. isBlank()

Checks if the string is empty or contains only whitespace characters (available from Java
11).
public class Main {
public static void main(String[] args) {
String str=""
boolean result = str.isBlank();
System.out.printin(result); // Output: true

¥

}
94. repeat() (Java 11+)

Repeats the string a specified number of times.

public class Main {
public static void main(String[] args) {
String str = "Hi ";
String repeatedStr = str.repeat(3);
System.out.printin(repeatedStr); // Output: Hi Hi Hi

1 44444444444494444444444444944444

KKK KRR KRR KRR KRR R KRR R R R R R KRR R R R KRR KRR KR KRR

R L s st st atatals

K
K
K

L 4444444444444 44494444444444444474

¥

}
K 95. strip() (Java 11+)

Removes leading and trailing whitespace, similar to trim() but also removes other types
of whitespace characters.
public class Main {
public static void main(String[] args) {
String str = "\t Hello World \n";
String strippedStr = str.strip();
System.out.printIn(strippedStr); // Output: *"Hello World*"

}

}
96. stripLeading() (Java 11+)

Removes leading whitespace characters.
public class Main {
public static void main(String[] args) {
String str =" Hello";
String result = str.stripLeading();
System.out.printin(result); // Output: "*Hello™

}

}
97. stripTrailing() (Java 11+)

Removes trailing whitespace characters.

KK

NOILONNA ONIYLS TOT

public class Main {
public static void main(String[] args) {
String str = "Hello ™,
String result = str.stripTrailing();
System.out.printin(result); // Output: "*Hello™

}

}
98. indent() (Java 12+)

Adjusts the indentation of the string by a specified number of spaces.

public class Main {
public static void main(String[] args) {
String str = "Hello\nWorld";
String indentedStr = str.indent(4); // Adds 4 spaces to the beginning of each
line
System.out.printin(indentedStr);
¥

¥
99. transform() (Java 12+)

Applies a function to the string and returns the result.
public class Main {
public static void main(String[] args) {
String str = "Hello";
String result = str.transform(s -> s + " World");
System.out.printin(result); // Output: Hello World

}

}
100. describeConstable() (Java 12+)

Returns an Optional containing the string (a representation of a constant).
import java.util.Optional;
public class Main {
public static void main(String[] args) {
String str = "Hello™;
Optional<String> optional = str.describeConstable();

1 44444444444494444444444444944444

GGG GGG GLLGLLGLGLLGLLGLLGLGLLGLLGLLLGLLL

KKK KRR KRR KRR KRR KRR R KRR KRR

K
K
K

L 4444444444444 44494444444444444474

optional.ifPresent(System.out::printin); // Output: Hello

¥
¥

101. resolveConstantDesc() (Java 12+)
Returns the string itself as a constant description.
public class Main {
public static void main(String[] args) {
String str = "Hello™;
Object constant = str.resolveConstantDesc(null);
System.out.printin(constant); // Output: Hello

3

NOILONNA ONIHLS TOT

The world is yours, and everything in it,
it's out there, get on your grind and get it.’
- Rick Ross.

PSS

*A

Empty ' CompareTo \

‘ < L. Y
i EndsWith
“ Java String

KKK R R R R R K K K KK R KR K KK R KR KRR KKK KR

S L s s st st at al

1 44444444444494444444444444944444 | 1444

